BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 21158407)

  • 1. A comparison between highly crystalline and low crystalline poly(phenylene sulfide) as polymer electrolyte membranes for fuel cells.
    Barique MA; Seesukphronrarak S; Wu L; Ohira A
    J Phys Chem B; 2011 Jan; 115(1):27-33. PubMed ID: 21158407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of water on the changes in morphology and proton conductivity for the highly crystalline hydrocarbon polymer electrolyte membrane for fuel cells.
    Barique MA; Wu L; Takimoto N; Kidena K; Ohira A
    J Phys Chem B; 2009 Dec; 113(49):15921-7. PubMed ID: 19908869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Poly(p-phenylene sulfone)s with high ion exchange capacity: ionomers with unique microstructural and transport features.
    de Araujo CC; Kreuer KD; Schuster M; Portale G; Mendil-Jakani H; Gebel G; Maier J
    Phys Chem Chem Phys; 2009 May; 11(17):3305-12. PubMed ID: 19370228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuned polymer electrolyte membranes based on aromatic polyethers for fuel cell applications.
    Miyatake K; Chikashige Y; Higuchi E; Watanabe M
    J Am Chem Soc; 2007 Apr; 129(13):3879-87. PubMed ID: 17352469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered structures in proton conducting membranes from supramolecular liquid crystal polymers.
    Every HA; Mendes E; Picken SJ
    J Phys Chem B; 2006 Nov; 110(47):23729-35. PubMed ID: 17125333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationships of Acid and water content to proton transport in statistically sulfonated proton exchange membranes: variation of water content via control of relative humidity.
    Peckham TJ; Schmeisser J; Holdcroft S
    J Phys Chem B; 2008 Mar; 112(10):2848-58. PubMed ID: 18288828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid proton conduction through unfreezable and bound water in a wholly aromatic pore-filling electrolyte membrane.
    Hara N; Ohashi H; Ito T; Yamaguchi T
    J Phys Chem B; 2009 Apr; 113(14):4656-63. PubMed ID: 19290602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly(sulfonated phenylene)-block-Polyimide Copolymers for Fuel Cell Applications.
    Bi H; Chen S; Chen X; Chen K; Endo N; Higa M; Okamoto K; Wang L
    Macromol Rapid Commun; 2009 Nov; 30(21):1852-6. PubMed ID: 21638465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature- and humidity-controlled SAXS analysis of proton-conductive ionomer membranes for fuel cells.
    Mochizuki T; Kakinuma K; Uchida M; Deki S; Watanabe M; Miyatake K
    ChemSusChem; 2014 Mar; 7(3):729-33. PubMed ID: 24578201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the polymer backbone structure on the properties of aromatic ionomers with pendant sulfobenzoyl side chains for use as proton-exchange membranes.
    Jutemar EP; Jannasch P
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3718-25. PubMed ID: 21138250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SAXS and NMR analysis for the cast solvent effect on sPEEK membrane properties.
    Luu DX; Cho EB; Han OH; Kim D
    J Phys Chem B; 2009 Jul; 113(30):10072-6. PubMed ID: 19572656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Sulfonation Poly(
    Yoon S; Ryu T; Kim K; Chandra SS; Ahmed F; Yang H; Lee S; Kim J; Kim W
    J Nanosci Nanotechnol; 2019 Mar; 19(3):1562-1566. PubMed ID: 30469223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and investigation of sulfonated poly(
    Yoshida-Hirahara M; Takahashi S; Yoshizawa-Fujita M; Takeoka Y; Rikukawa M
    RSC Adv; 2020 Mar; 10(22):12810-12822. PubMed ID: 35492080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay between structure and relaxations in perfluorosulfonic acid proton conducting membranes.
    Giffin GA; Haugen GM; Hamrock SJ; Di Noto V
    J Am Chem Soc; 2013 Jan; 135(2):822-34. PubMed ID: 23249300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonhumidified intermediate temperature fuel cells using protic ionic liquids.
    Lee SY; Ogawa A; Kanno M; Nakamoto H; Yasuda T; Watanabe M
    J Am Chem Soc; 2010 Jul; 132(28):9764-73. PubMed ID: 20578771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of binder properties on kinetic and transport processes in polymer electrolyte fuel cell electrodes.
    Sambandam S; Ramani V
    Phys Chem Chem Phys; 2010 Jun; 12(23):6140-9. PubMed ID: 20383348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibrational spectroscopic study of pure and silica-doped sulfonated poly(ether ether ketone) membranes.
    Rangasamy VS; Thayumanasundaram S; Seo JW; Locquet JP
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():693-9. PubMed ID: 25544185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sulfonated poly(styrene-co-maleic anhydride)-poly(ethylene glycol)-silica nanocomposite polyelectrolyte membranes for fuel cell applications.
    Saxena A; Tripathi BP; Shahi VK
    J Phys Chem B; 2007 Nov; 111(43):12454-61. PubMed ID: 17929856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel highly proton conductive sulfonated poly(p-phenylene) from 2,5-dichloro-4-(phenoxypropyl)benzophenone as proton exchange membranes for fuel cell applications.
    Seesukphronrarak S; Ohira A
    Chem Commun (Camb); 2009 Aug; (31):4744-6. PubMed ID: 19641829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Effects of Temperature and Humidity on the Microstructure of Sulfonated Syndiotactic-polystyrene Ionic Membranes.
    Schiavone MM; Lamparelli DH; Zhao Y; Zhu F; Revay Z; Radulescu A
    Membranes (Basel); 2020 Aug; 10(8):. PubMed ID: 32824025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.