BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

574 related articles for article (PubMed ID: 21158443)

  • 1. Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens.
    Geelhoed JS; Stams AJ
    Environ Sci Technol; 2011 Jan; 45(2):815-20. PubMed ID: 21158443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters.
    Kiely PD; Cusick R; Call DF; Selembo PA; Regan JM; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):388-94. PubMed ID: 20554197
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic efficiency of Geobacter sulfurreducens growing on anodes with different redox potentials.
    Bosch J; Lee KY; Hong SF; Harnisch F; Schröder U; Meckenstock RU
    Curr Microbiol; 2014 Jun; 68(6):763-8. PubMed ID: 24554342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conjugated oligoelectrolyte represses hydrogen oxidation by Geobacter sulfurreducens in microbial electrolysis cells.
    Liu J; Hou H; Chen X; Bazan GC; Kashima H; Logan BE
    Bioelectrochemistry; 2015 Dec; 106(Pt B):379-82. PubMed ID: 26265121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetate enhances startup of a H₂-producing microbial biocathode.
    Jeremiasse AW; Hamelers HV; Croese E; Buisman CJ
    Biotechnol Bioeng; 2012 Mar; 109(3):657-64. PubMed ID: 22012403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms.
    Speers AM; Reguera G
    Appl Environ Microbiol; 2012 Jan; 78(2):437-44. PubMed ID: 22101036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen production by geobacter species and a mixed consortium in a microbial electrolysis cell.
    Call DF; Wagner RC; Logan BE
    Appl Environ Microbiol; 2009 Dec; 75(24):7579-87. PubMed ID: 19820150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new insight into potential regulation on growth and power generation of Geobacter sulfurreducens in microbial fuel cells based on energy viewpoint.
    Wei J; Liang P; Cao X; Huang X
    Environ Sci Technol; 2010 Apr; 44(8):3187-91. PubMed ID: 20345152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization.
    Torres CI; Krajmalnik-Brown R; Parameswaran P; Marcus AK; Wanger G; Gorby YA; Rittmann BE
    Environ Sci Technol; 2009 Dec; 43(24):9519-24. PubMed ID: 20000550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells.
    Call DF; Logan BE
    Biosens Bioelectron; 2011 Jul; 26(11):4526-31. PubMed ID: 21652198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced electrode-reducing rate during the enrichment process in an air-cathode microbial fuel cell.
    Ishii S; Logan BE; Sekiguchi Y
    Appl Microbiol Biotechnol; 2012 May; 94(4):1087-94. PubMed ID: 22223104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial electrolysis cell with a microbial biocathode.
    Jeremiasse AW; Hamelers HV; Buisman CJ
    Bioelectrochemistry; 2010 Apr; 78(1):39-43. PubMed ID: 19523879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetate oxidation by syntrophic association between Geobacter sulfurreducens and a hydrogen-utilizing exoelectrogen.
    Kimura Z; Okabe S
    ISME J; 2013 Aug; 7(8):1472-82. PubMed ID: 23486252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Scale Mutational Analysis of Geobacter sulfurreducens Reveals Distinct Molecular Mechanisms for Respiration and Sensing of Poised Electrodes versus Fe(III) Oxides.
    Chan CH; Levar CE; Jiménez-Otero F; Bond DR
    J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28674067
    [No Abstract]   [Full Text] [Related]  

  • 17. Consolidated bioprocessing of AFEX-pretreated corn stover to ethanol and hydrogen in a microbial electrolysis cell.
    Speers AM; Reguera G
    Environ Sci Technol; 2012 Jul; 46(14):7875-81. PubMed ID: 22697183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of low-cost cathode catalysts for high yield biohydrogen production in microbial electrolysis cell.
    Wang L; Chen Y; Ye Y; Lu B; Zhu S; Shen S
    Water Sci Technol; 2011; 63(3):440-8. PubMed ID: 21278465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electricity production by Geobacter sulfurreducens attached to electrodes.
    Bond DR; Lovley DR
    Appl Environ Microbiol; 2003 Mar; 69(3):1548-55. PubMed ID: 12620842
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lactate oxidation coupled to iron or electrode reduction by Geobacter sulfurreducens PCA.
    Call DF; Logan BE
    Appl Environ Microbiol; 2011 Dec; 77(24):8791-4. PubMed ID: 22003020
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.