These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21158484)

  • 1. Enhanced logic performance with semiconducting bilayer graphene channels.
    Li SL; Miyazaki H; Hiura H; Liu C; Tsukagoshi K
    ACS Nano; 2011 Jan; 5(1):500-6. PubMed ID: 21158484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Opening an electrical band gap of bilayer graphene with molecular doping.
    Zhang W; Lin CT; Liu KK; Tite T; Su CY; Chang CH; Lee YH; Chu CW; Wei KH; Kuo JL; Li LJ
    ACS Nano; 2011 Sep; 5(9):7517-24. PubMed ID: 21819152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical study of the source-drain current and gate leakage current to understand the graphene field-effect transistors.
    Yu C; Liu H; Ni W; Gao N; Zhao J; Zhang H
    Phys Chem Chem Phys; 2011 Feb; 13(8):3461-7. PubMed ID: 21240394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode.
    Ramesh P; Itkis ME; Bekyarova E; Wang F; Niyogi S; Chi X; Berger C; de Heer W; Haddon RC
    J Am Chem Soc; 2010 Oct; 132(41):14429-36. PubMed ID: 20873843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature.
    Xia F; Farmer DB; Lin YM; Avouris P
    Nano Lett; 2010 Feb; 10(2):715-8. PubMed ID: 20092332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap state analysis in electric-field-induced band gap for bilayer graphene.
    Kanayama K; Nagashio K
    Sci Rep; 2015 Oct; 5():15789. PubMed ID: 26511395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gate-induced insulating state in bilayer graphene devices.
    Oostinga JB; Heersche HB; Liu X; Morpurgo AF; Vandersypen LM
    Nat Mater; 2008 Feb; 7(2):151-7. PubMed ID: 18059274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gate-variable optical transitions in graphene.
    Wang F; Zhang Y; Tian C; Girit C; Zettl A; Crommie M; Shen YR
    Science; 2008 Apr; 320(5873):206-9. PubMed ID: 18339901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved performance of graphene transistors by strain engineering.
    Nguyen VH; Nguyen HV; Dollfus P
    Nanotechnology; 2014 Apr; 25(16):165201. PubMed ID: 24670679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral graphene-hBCN heterostructures as a platform for fully two-dimensional transistors.
    Fiori G; Betti A; Bruzzone S; Iannaccone G
    ACS Nano; 2012 Mar; 6(3):2642-8. PubMed ID: 22372431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemically enhanced double-gate bilayer graphene field-effect transistor with neutral channel for logic applications.
    Nourbakhsh A; Agarwal TK; Klekachev A; Asselberghs I; Cantoro M; Huyghebaert C; Heyns M; Verhelst M; Thean A; De Gendt S
    Nanotechnology; 2014 Aug; 25(34):345203. PubMed ID: 25101635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cascading wafer-scale integrated graphene complementary inverters under ambient conditions.
    Rizzi LG; Bianchi M; Behnam A; Carrion E; Guerriero E; Polloni L; Pop E; Sordan R
    Nano Lett; 2012 Aug; 12(8):3948-53. PubMed ID: 22793169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical and noise characteristics of graphene field-effect transistors: ambient effects, noise sources and physical mechanisms.
    Rumyantsev S; Liu G; Stillman W; Shur M; Balandin AA
    J Phys Condens Matter; 2010 Oct; 22(39):395302. PubMed ID: 21403224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene barristor, a triode device with a gate-controlled Schottky barrier.
    Yang H; Heo J; Park S; Song HJ; Seo DH; Byun KE; Kim P; Yoo I; Chung HJ; Kim K
    Science; 2012 Jun; 336(6085):1140-3. PubMed ID: 22604723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance evaluation of electro-optic effect based graphene transistors.
    Gupta G; Jalil MB; Yu B; Liang G
    Nanoscale; 2012 Oct; 4(20):6365-73. PubMed ID: 22948474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The formation of a p-n junction in a polymer electrolyte top-gated bilayer graphene transistor.
    Chakraborty B; Das A; Sood AK
    Nanotechnology; 2009 Sep; 20(36):365203. PubMed ID: 19687535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Logic circuits based on individual semiconducting and metallic carbon-nanotube devices.
    Ryu H; Kälblein D; Weitz RT; Ante F; Zschieschang U; Kern K; Schmidt OG; Klauk H
    Nanotechnology; 2010 Nov; 21(47):475207. PubMed ID: 21030776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable band gap in hydrogenated bilayer graphene.
    Samarakoon DK; Wang XQ
    ACS Nano; 2010 Jul; 4(7):4126-30. PubMed ID: 20536219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementary symmetry nanowire logic circuits: experimental demonstrations and in silico optimizations.
    Sheriff BA; Wang D; Heath JR; Kurtin JN
    ACS Nano; 2008 Sep; 2(9):1789-98. PubMed ID: 19206417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters.
    Yu WJ; Li Z; Zhou H; Chen Y; Wang Y; Huang Y; Duan X
    Nat Mater; 2013 Mar; 12(3):246-52. PubMed ID: 23241535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.