BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 21159)

  • 1. Carbon monoxide oxidation by methanogenic bacteria.
    Daniels L; Fuchs G; Thauer RK; Zeikus JG
    J Bacteriol; 1977 Oct; 132(1):118-26. PubMed ID: 21159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidation of carbon monoxide in cell extracts of Pseudomonas carboxydovorans.
    Meyer O; Schlegel HG
    J Bacteriol; 1979 Feb; 137(2):811-7. PubMed ID: 33964
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum.
    Zeikus JG; Fuchs G; Kenealy W; Thauer RK
    J Bacteriol; 1977 Nov; 132(2):604-13. PubMed ID: 914779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum.
    Diekert GB; Thauer RK
    J Bacteriol; 1978 Nov; 136(2):597-606. PubMed ID: 711675
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of carbon monoxide from CO2 and H2 by Methanobacterium thermoautotrophicum.
    Eikmanns B; Fuchs G; Thauer RK
    Eur J Biochem; 1985 Jan; 146(1):149-54. PubMed ID: 3917916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of formate in Methanobacterium formicicum.
    Schauer NL; Ferry JG
    J Bacteriol; 1980 Jun; 142(3):800-7. PubMed ID: 6769911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proton-motive-force-driven formation of CO from CO2 and H2 in methanogenic bacteria.
    Bott M; Thauer RK
    Eur J Biochem; 1987 Oct; 168(2):407-12. PubMed ID: 2822415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis.
    Bryant MP; McBride BC; Wolfe RS
    J Bacteriol; 1968 Mar; 95(3):1118-23. PubMed ID: 5651323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.
    Daniel SL; Hsu T; Dean SI; Drake HL
    J Bacteriol; 1990 Aug; 172(8):4464-71. PubMed ID: 2376565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon monoxide:methylene blue oxidoreductase from Pseudomonas carboxydovorans.
    Meyer O; Schlegel HG
    J Bacteriol; 1980 Jan; 141(1):74-80. PubMed ID: 7354006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of CO oxidation by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by anions.
    Seravalli J; Kumar M; Lu WP; Ragsdale SW
    Biochemistry; 1995 Jun; 34(24):7879-88. PubMed ID: 7794899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H2-forming methylenetetrahydromethanopterin dehydrogenase, a novel type of hydrogenase without iron-sulfur clusters in methanogenic archaea.
    Zirngibl C; Van Dongen W; Schwörer B; Von Bünau R; Richter M; Klein A; Thauer RK
    Eur J Biochem; 1992 Sep; 208(2):511-20. PubMed ID: 1521540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and purification of carbon monoxide dehydrogenase from Methanosarcina barkeri.
    Krzycki JA; Zeikus JG
    J Bacteriol; 1984 Apr; 158(1):231-7. PubMed ID: 6425262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a 45-kDa flavoprotein and evidence for a rubredoxin, two proteins that could participate in electron transport from H2 to CO2 in methanogenesis in Methanobacterium thermoautotrophicum.
    Nölling J; Ishii M; Koch J; Pihl TD; Reeve JN; Thauer RK; Hedderich R
    Eur J Biochem; 1995 Aug; 231(3):628-38. PubMed ID: 7649162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum.
    Drake HL
    J Bacteriol; 1982 May; 150(2):702-9. PubMed ID: 7040339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. F420H2 oxidase (FprA) from Methanobrevibacter arboriphilus, a coenzyme F420-dependent enzyme involved in O2 detoxification.
    Seedorf H; Dreisbach A; Hedderich R; Shima S; Thauer RK
    Arch Microbiol; 2004 Oct; 182(2-3):126-37. PubMed ID: 15340796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park.
    Sokolova TG; González JM; Kostrikina NA; Chernyh NA; Slepova TV; Bonch-Osmolovskaya EA; Robb FT
    Int J Syst Evol Microbiol; 2004 Nov; 54(Pt 6):2353-2359. PubMed ID: 15545483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation of methane formation and enzyme contents during growth of Methanobacterium thermoautotrophicum (strain deltaH) in a fed-batch fermentor.
    Pennings JL; Vermeij P; de Poorter LM; Keltjens JT; Vogels GD
    Antonie Van Leeuwenhoek; 2000 Apr; 77(3):281-91. PubMed ID: 15188894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nutrition and factors limiting the growth of a methanogenic bacterium (Methanobacterium thermoautotrophicum).
    Taylor GT; Pirt SJ
    Arch Microbiol; 1977 May; 113(1-2):17-22. PubMed ID: 889384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.