BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 2115930)

  • 1. Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments.
    Engberg J; Nielsen H; Lenaers G; Murayama O; Fujitani H; Higashinakagawa T
    J Mol Evol; 1990 Jun; 30(6):514-21. PubMed ID: 2115930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primary and secondary structures of Tetrahymena and aphid 5.8S rRNAs: structural features of 5.8S rRNA which interacts with the 28S rRNA containing the hidden break.
    Fujiwara H; Ishikawa H
    Nucleic Acids Res; 1982 Sep; 10(17):5173-82. PubMed ID: 6815618
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence heterogeneity in the duplicate large subunit ribosomal RNA genes of Tetrahymena pyriformis mitochondrial DNA.
    Heinonen TY; Schnare MN; Gray MW
    J Biol Chem; 1990 Dec; 265(36):22336-41. PubMed ID: 2125048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rearranged coding segments, separated by a transfer RNA gene, specify the two parts of a discontinuous large subunit ribosomal RNA in Tetrahymena pyriformis mitochondria.
    Heinonen TY; Schnare MN; Young PG; Gray MW
    J Biol Chem; 1987 Feb; 262(6):2879-87. PubMed ID: 3102478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The secondary structure of large-subunit rRNA divergent domains, a marker for protist evolution.
    Lenaers G; Nielsen H; Engberg J; Herzog M
    Biosystems; 1988; 21(3-4):215-22. PubMed ID: 3395681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A discontinuous small subunit ribosomal RNA in Tetrahymena pyriformis mitochondria.
    Schnare MN; Heinonen TY; Young PG; Gray MW
    J Biol Chem; 1986 Apr; 261(11):5187-93. PubMed ID: 3082879
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fine restriction map of the linear mitochondrial DNA of Tetrahymena pyriformis: genome size, map locations of rRNA and tRNA genes, terminal inversion repeat, and restriction site polymorphism.
    Suyama Y; Fukuhara H; Sor F
    Curr Genet; 1985; 9(6):479-93. PubMed ID: 2897250
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster.
    Hancock JM; Tautz D; Dover GA
    Mol Biol Evol; 1988 Jul; 5(4):393-414. PubMed ID: 3136295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 5S and 5.8S ribosomal RNA sequences of Tetrahymena thermophila and T. pyriformis.
    Van Bell CT
    J Protozool; 1985 Nov; 32(4):640-4. PubMed ID: 3934361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Detection and analysis of Tetrahymena pyriformis 26S ribosomal DNA domain sequences, differing in degree of evolutionary conservation].
    Mukha DV; Sidorenko AP
    Mol Biol (Mosk); 1995; 29(3):529-37. PubMed ID: 8552057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleotide sequence of the 17S ribosomal RNA gene of Tetrahymena thermophila and the identification of point mutations resulting in resistance to the antibiotics paromomycin and hygromycin.
    Spangler EA; Blackburn EH
    J Biol Chem; 1985 May; 260(10):6334-40. PubMed ID: 3997824
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of pre-rRNA components in ribosomal precursor particles from macronuclei of Tetrahymena thermophila.
    Müller B; Eckert WA
    Eur J Cell Biol; 1989 Aug; 49(2):225-35. PubMed ID: 2776772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nucleotide sequence at the transcription termination site of the ribosomal RNA gene in Tetrahymena thermophila.
    Din N; Engberg J; Gall JG
    Nucleic Acids Res; 1982 Mar; 10(5):1503-13. PubMed ID: 6280147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural constraints in expansion segments from a midge 26S rDNA.
    Gorab E; Garcia de Lacoba M; Botella LM
    J Mol Evol; 1995 Dec; 41(6):1016-21. PubMed ID: 8587100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic relationships and altered genome structures among Tetrahymena mitochondrial DNAs.
    Morin GB; Cech TR
    Nucleic Acids Res; 1988 Jan; 16(1):327-46. PubMed ID: 2829120
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide sequence of Citrus limon 26S rRNA gene and secondary structure model of its RNA.
    Kolosha VO; Fodor I
    Plant Mol Biol; 1990 Feb; 14(2):147-61. PubMed ID: 2101688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mitochondrial genome of the fission yeast, Schizosaccharomyces pombe. Sequence of the large-subunit ribosomal RNA gene, comparison of potential secondary structure in fungal mitochondrial large-subunit rRNAs and evolutionary considerations.
    Lang BF; Cedergren R; Gray MW
    Eur J Biochem; 1987 Dec; 169(3):527-37. PubMed ID: 2446871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the Tetrahymena pyriformis rRNA gene. Nucleotide sequence of the transcription termination region.
    Niles EG; Cunningham K; Jain R
    J Biol Chem; 1981 Dec; 256(24):12857-60. PubMed ID: 6273410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common sequence elements are important for transcription and replication of the extrachromosomal rRNA-encoding genes of Tetrahymena.
    Miyahara K; Hashimoto N; Higashinakagawa T; Pearlman RE
    Gene; 1993 May; 127(2):209-13. PubMed ID: 8500763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence and secondary structure of the central domain of Drosophila 26S rRNA: a universal model for the central domain of the large rRNA containing the region in which the central break may happen.
    de Lanversin G; Jacq B
    J Mol Evol; 1989 May; 28(5):403-17. PubMed ID: 2501502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.