These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 21159331)

  • 1. Thermal glycosylation and degradation reactions occurring at the reducing ends of cellulose during low-temperature pyrolysis.
    Matsuoka S; Kawamoto H; Saka S
    Carbohydr Res; 2011 Feb; 346(2):272-9. PubMed ID: 21159331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactivity of cellulose reducing end in pyrolysis as studied by methyl glucoside-impregnation.
    Matsuoka S; Kawamoto H; Saka S
    Carbohydr Res; 2016 Feb; 420():46-50. PubMed ID: 26717548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pyrolysis characteristics and kinetics of Arundo donax using thermogravimetric analysis.
    Jeguirim M; Trouvé G
    Bioresour Technol; 2009 Sep; 100(17):4026-31. PubMed ID: 19362825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal response in crystalline Ibeta cellulose: a molecular dynamics study.
    Bergenstråhle M; Berglund LA; Mazeau K
    J Phys Chem B; 2007 Aug; 111(30):9138-45. PubMed ID: 17628097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose.
    Roman M; Winter WT
    Biomacromolecules; 2004; 5(5):1671-7. PubMed ID: 15360274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-dimensional correlation spectroscopy and principal component analysis studies of temperature-dependent IR spectra of cotton-cellulose.
    Kokot S; Czarnik-Matusewicz B; Ozaki Y
    Biopolymers; 2002; 67(6):456-69. PubMed ID: 12209453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrhenius relationships from the molecule and cell to the clinic.
    Dewey WC
    Int J Hyperthermia; 2009 Feb; 25(1):3-20. PubMed ID: 19219695
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-isothermal pyrolysis characteristics of giant sensitive plants using thermogravimetric analysis.
    Wongsiriamnuay T; Tippayawong N
    Bioresour Technol; 2010 Jul; 101(14):5638-44. PubMed ID: 20189804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and characterization of phthalated cellulose derivatives in room-temperature ionic liquid without catalysts.
    Liu CF; Sun RC; Zhang AP; Qin MH; Ren JL; Wang XA
    J Agric Food Chem; 2007 Mar; 55(6):2399-406. PubMed ID: 17319683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of inorganic salts on the primary pyrolysis products of cellulose.
    Patwardhan PR; Satrio JA; Brown RC; Shanks BH
    Bioresour Technol; 2010 Jun; 101(12):4646-55. PubMed ID: 20171877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat-stress proteins and thermal resistance in rat mammary tumor cells.
    Tomasovic SP; Steck PA; Heitzman D
    Radiat Res; 1983 Aug; 95(2):399-413. PubMed ID: 6611857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH dependent effect of glycosylation on protein stability.
    Wang W; Antonsen K; Wang YJ; Wang DQ
    Eur J Pharm Sci; 2008 Feb; 33(2):120-7. PubMed ID: 18162379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique gelation behavior of cellulose in NaOH/urea aqueous solution.
    Cai J; Zhang L
    Biomacromolecules; 2006 Jan; 7(1):183-9. PubMed ID: 16398514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The mechanism for thermal decomposition of cellulose and its main products.
    Shen DK; Gu S
    Bioresour Technol; 2009 Dec; 100(24):6496-504. PubMed ID: 19625184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-dependent changes in hydrogen bonds in cellulose Ialpha studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy: comparison with cellulose Ibeta.
    Watanabe A; Morita S; Ozaki Y
    Biomacromolecules; 2007 Sep; 8(9):2969-75. PubMed ID: 17705428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and thermal behavior of a cellulose I-ethylenediamine complex.
    Wada M; Kwon GJ; Nishiyama Y
    Biomacromolecules; 2008 Oct; 9(10):2898-904. PubMed ID: 18778097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes.
    Medve J; Karlsson J; Lee D; Tjerneld F
    Biotechnol Bioeng; 1998 Sep; 59(5):621-34. PubMed ID: 10099380
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of dimethyl formamide pulping of wheat straw on cellulose degradation and comparison with Kraft process.
    Ziaie-Shirkolaee Y; Mohammadi-Rovshandeh J; Rezayati-Charani P; Khajeheian MB
    Bioresour Technol; 2008 Jun; 99(9):3568-78. PubMed ID: 17904837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extensive N-glycosylation reduces the thermal stability of a recombinant alkalophilic bacillus alpha-amylase produced in Pichia pastoris.
    Tull D; Gottschalk TE; Svendsen I; Kramhøft B; Phillipson BA; Bisgård-Frantzen H; Olsen O; Svensson B
    Protein Expr Purif; 2001 Feb; 21(1):13-23. PubMed ID: 11162382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological and thermal properties of cellulose-montmorillonite nanocomposites.
    Cerruti P; Ambrogi V; Postiglione A; Rychlý J; Matisová-Rychlá L; Carfagna C
    Biomacromolecules; 2008 Nov; 9(11):3004-13. PubMed ID: 18842055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.