These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 21159949)

  • 1. Incorporating feedback from multiple sensory modalities enhances brain-machine interface control.
    Suminski AJ; Tkach DC; Fagg AH; Hatsopoulos NG
    J Neurosci; 2010 Dec; 30(50):16777-87. PubMed ID: 21159949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting multiple sensory modalities in brain-machine interfaces.
    Suminski AJ; Tkach DC; Hatsopoulos NG
    Neural Netw; 2009 Nov; 22(9):1224-34. PubMed ID: 19525091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring time-scales of closed-loop decoder adaptation in brain-machine interfaces.
    Orsborn AL; Dangi S; Moorman HG; Carmena JM
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5436-9. PubMed ID: 22255567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Information conveyed through brain-control: cursor versus robot.
    Taylor DM; Tillery SI; Schwartz AB
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):195-9. PubMed ID: 12899273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain-machine interface cursor position only weakly affects monkey and human motor cortical activity in the absence of arm movements.
    Stavisky SD; Kao JC; Nuyujukian P; Pandarinath C; Blabe C; Ryu SI; Hochberg LR; Henderson JM; Shenoy KV
    Sci Rep; 2018 Nov; 8(1):16357. PubMed ID: 30397281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training in cortical control of neuroprosthetic devices improves signal extraction from small neuronal ensembles.
    Helms Tillery SI; Taylor DM; Schwartz AB
    Rev Neurosci; 2003; 14(1-2):107-19. PubMed ID: 12929922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance.
    Corbet T; Iturrate I; Pereira M; Perdikis S; Millán JDR
    Neuroimage; 2018 Aug; 176():268-276. PubMed ID: 29689307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Internal models engaged by brain-computer interface control.
    Golub MD; Yu BM; Chase SM
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1327-30. PubMed ID: 23366143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous decoding of intended movements with a hybrid kinetic and kinematic brain machine interface.
    Suminski AJ; Willett FR; Fagg AH; Bodenhamer M; Hatsopoulos NG
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5802-6. PubMed ID: 22255659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoring the Sense of Touch Using a Sensorimotor Demultiplexing Neural Interface.
    Ganzer PD; Colachis SC; Schwemmer MA; Friedenberg DA; Dunlap CF; Swiftney CE; Jacobowitz AF; Weber DJ; Bockbrader MA; Sharma G
    Cell; 2020 May; 181(4):763-773.e12. PubMed ID: 32330415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of Redundant Kinematic Degrees of Freedom in a Closed-Loop Brain-Machine Interface.
    Moorman HG; Gowda S; Carmena JM
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):750-760. PubMed ID: 27455526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial proprioceptive feedback for myoelectric control.
    Pistohl T; Joshi D; Ganesh G; Jackson A; Nazarpour K
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):498-507. PubMed ID: 25216484
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity in Primary Motor Cortex Related to Visual Feedback.
    Suway SB; Schwartz AB
    Cell Rep; 2019 Dec; 29(12):3872-3884.e4. PubMed ID: 31851920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A real-time brain-machine interface combining motor target and trajectory intent using an optimal feedback control design.
    Shanechi MM; Williams ZM; Wornell GW; Hu RC; Powers M; Brown EN
    PLoS One; 2013; 8(4):e59049. PubMed ID: 23593130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auto-deleting brain machine interface: Error detection using spiking neural activity in the motor cortex.
    Even-Chen N; Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():71-5. PubMed ID: 26736203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuronal activity related to the visual representation of arm movements in the lateral cerebellar cortex.
    Liu X; Robertson E; Miall RC
    J Neurophysiol; 2003 Mar; 89(3):1223-37. PubMed ID: 12612044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lingual electrotactile stimulation as an alternative sensory feedback pathway for brain-computer interface applications.
    Wilson JA; Walton LM; Tyler M; Williams J
    J Neural Eng; 2012 Aug; 9(4):045007. PubMed ID: 22832032
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motor Cortical Visuomotor Feedback Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space Dimensions.
    Stavisky SD; Kao JC; Ryu SI; Shenoy KV
    Neuron; 2017 Jul; 95(1):195-208.e9. PubMed ID: 28625485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulus-driven changes in sensorimotor behavior and neuronal functional connectivity application to brain-machine interfaces and neurorehabilitation.
    Rebesco JM; Miller LE
    Prog Brain Res; 2011; 192():83-102. PubMed ID: 21763520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-actuated gait trainer with visual and proprioceptive feedback.
    Liu D; Chen W; Lee K; Chavarriaga R; Bouri M; Pei Z; Del R Millán J
    J Neural Eng; 2017 Oct; 14(5):056017. PubMed ID: 28696340
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.