These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
274 related articles for article (PubMed ID: 21159949)
21. Supplemental vibrotactile feedback control of stabilization and reaching actions of the arm using limb state and position error encodings. Krueger AR; Giannoni P; Shah V; Casadio M; Scheidt RA J Neuroeng Rehabil; 2017 May; 14(1):36. PubMed ID: 28464891 [TBL] [Abstract][Full Text] [Related]
22. Kinesthetic Feedback During 2DOF Wrist Movements via a Novel MR-Compatible Robot. Erwin A; O'Malley MK; Ress D; Sergi F IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1489-1499. PubMed ID: 28114022 [TBL] [Abstract][Full Text] [Related]
23. Trial-by-Trial Motor Cortical Correlates of a Rapidly Adapting Visuomotor Internal Model. Stavisky SD; Kao JC; Ryu SI; Shenoy KV J Neurosci; 2017 Feb; 37(7):1721-1732. PubMed ID: 28087767 [TBL] [Abstract][Full Text] [Related]
24. Target-, limb-, and context-dependent neural activity in the cingulate and supplementary motor areas of the monkey. Crutcher MD; Russo GS; Ye S; Backus DA Exp Brain Res; 2004 Oct; 158(3):278-88. PubMed ID: 15365665 [TBL] [Abstract][Full Text] [Related]
25. Visual and kinesthetic control of goal-directed movements to visually and kinesthetically presented targets. Laufer Y; Hocherman S Percept Mot Skills; 1998 Jun; 86(3 Pt 2):1375-91. PubMed ID: 9700816 [TBL] [Abstract][Full Text] [Related]
26. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes. Stavisky SD; Kao JC; Nuyujukian P; Ryu SI; Shenoy KV J Neural Eng; 2015 Jun; 12(3):036009. PubMed ID: 25946198 [TBL] [Abstract][Full Text] [Related]
27. Sensory response properties of pyramidal tract neurons in the precentral motor cortex and postcentral gyrus of the rhesus monkey. Fromm C; Wise SP; Evarts EV Exp Brain Res; 1984; 54(1):177-85. PubMed ID: 6698144 [TBL] [Abstract][Full Text] [Related]
28. Enhanced mechanical transparency during practice impedes open-loop control of a complex tool. Sülzenbrück S; Heuer H Exp Brain Res; 2012 Apr; 218(2):283-94. PubMed ID: 22278111 [TBL] [Abstract][Full Text] [Related]
29. Preferential representation of instructed target location versus limb trajectory in dorsal premotor area. Shen L; Alexander GE J Neurophysiol; 1997 Mar; 77(3):1195-212. PubMed ID: 9084590 [TBL] [Abstract][Full Text] [Related]
30. Neural correlates of a spatial sensory-to-motor transformation in primary motor cortex. Shen L; Alexander GE J Neurophysiol; 1997 Mar; 77(3):1171-94. PubMed ID: 9084589 [TBL] [Abstract][Full Text] [Related]
31. Cortical control of a prosthetic arm for self-feeding. Velliste M; Perel S; Spalding MC; Whitford AS; Schwartz AB Nature; 2008 Jun; 453(7198):1098-101. PubMed ID: 18509337 [TBL] [Abstract][Full Text] [Related]
36. Neural Signatures of Interface Errors in Remote Agent Manipulation. Yazmir B; Reiner M Neuroscience; 2022 Mar; 486():62-76. PubMed ID: 33639224 [TBL] [Abstract][Full Text] [Related]
37. Brain-machine interface via real-time fMRI: preliminary study on thought-controlled robotic arm. Lee JH; Ryu J; Jolesz FA; Cho ZH; Yoo SS Neurosci Lett; 2009 Jan; 450(1):1-6. PubMed ID: 19026717 [TBL] [Abstract][Full Text] [Related]
38. Visual and somatic sensory feedback of brain activity for intuitive surgical robot manipulation. Miura S; Matsumoto Y; Kobayashi Y; Kawamura K; Nakashima Y; Fujie MG Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():17-20. PubMed ID: 26736190 [TBL] [Abstract][Full Text] [Related]
39. Rhesus monkeys learn to control a directional-key inspired brain machine interface via bio-feedback. Zhang C; Wang H; Tang S; Li Z PLoS One; 2024; 19(1):e0286742. PubMed ID: 38232123 [TBL] [Abstract][Full Text] [Related]