These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21159969)

  • 1. A decrementing form of plasticity apparent in cerebellar learning.
    Ohyama T; Voicu H; Kalmbach B; Mauk MD
    J Neurosci; 2010 Dec; 30(50):16993-7003. PubMed ID: 21159969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal patterns of inputs to cerebellum necessary and sufficient for trace eyelid conditioning.
    Kalmbach BE; Ohyama T; Mauk MD
    J Neurophysiol; 2010 Aug; 104(2):627-40. PubMed ID: 20484534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in cerebellar intrinsic neuronal excitability and synaptic plasticity result from eyeblink conditioning.
    Schreurs BG
    Neurobiol Learn Mem; 2019 Dec; 166():107094. PubMed ID: 31542329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulations of cerebellar motor learning: computational analysis of plasticity at the mossy fiber to deep nucleus synapse.
    Medina JF; Mauk MD
    J Neurosci; 1999 Aug; 19(16):7140-51. PubMed ID: 10436067
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebellar mechanisms of learning and plasticity revealed by delay eyelid conditioning.
    Mauk MD; Li W; Khilkevich A; Halverson H
    Int Rev Neurobiol; 2014; 117():21-37. PubMed ID: 25172627
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit.
    Tracy JA; Thompson JK; Krupa DJ; Thompson RF
    Behav Neurosci; 1998 Apr; 112(2):267-85. PubMed ID: 9588477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between prefrontal cortex and cerebellum revealed by trace eyelid conditioning.
    Kalmbach BE; Ohyama T; Kreider JC; Riusech F; Mauk MD
    Learn Mem; 2009 Jan; 16(1):86-95. PubMed ID: 19144967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar learning mechanisms.
    Freeman JH
    Brain Res; 2015 Sep; 1621():260-9. PubMed ID: 25289586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of plasticity in the pontocerebellar conditioned stimulus pathway during classical conditioning of the eyeblink response in the rabbit.
    Tracy JA; Thompson JK; Krupa DJ; Thompson RF
    Behav Neurosci; 2013 Oct; 127(5):676-89. PubMed ID: 24128357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Timing mechanisms in the cerebellum: testing predictions of a large-scale computer simulation.
    Medina JF; Garcia KS; Nores WL; Taylor NM; Mauk MD
    J Neurosci; 2000 Jul; 20(14):5516-25. PubMed ID: 10884335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum.
    Hansel C; Linden DJ; D'Angelo E
    Nat Neurosci; 2001 May; 4(5):467-75. PubMed ID: 11319554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic plasticity of the interpositorubral pathway functionally related to forelimb flexion movements.
    Pananceau M; Rispal-Padel L; Meftah EM
    J Neurophysiol; 1996 Jun; 75(6):2542-61. PubMed ID: 8793763
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synapses between parallel fibres and stellate cells express long-term changes in synaptic efficacy in rat cerebellum.
    Rancillac A; Crépel F
    J Physiol; 2004 Feb; 554(Pt 3):707-20. PubMed ID: 14617674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Links Between Single-Trial Changes and Learning Rate in Eyelid Conditioning.
    Khilkevich A; Halverson HE; Canton-Josh JE; Mauk MD
    Cerebellum; 2016 Apr; 15(2):112-21. PubMed ID: 26112423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A subtraction mechanism of temporal coding in cerebellar cortex.
    Kalmbach BE; Voicu H; Ohyama T; Mauk MD
    J Neurosci; 2011 Feb; 31(6):2025-34. PubMed ID: 21307241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Medial Auditory Thalamus Is Necessary for Expression of Auditory Trace Eyelid Conditioning.
    Hoffmann LC; Zara SJ; DeLord ED; Mauk MD
    J Neurosci; 2018 Oct; 38(41):8831-8844. PubMed ID: 30120206
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired cerebellar plasticity and eye-blink conditioning in calpain-1 knock-out mice.
    Heysieattalab S; Lee KH; Liu Y; Wang Y; Foy MR; Bi X; Baudry M
    Neurobiol Learn Mem; 2020 Apr; 170():106995. PubMed ID: 30735788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning.
    Geminiani A; Casellato C; Boele HJ; Pedrocchi A; De Zeeuw CI; D'Angelo E
    PLoS Comput Biol; 2024 Apr; 20(4):e1011277. PubMed ID: 38574161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cerebellar cortex lesions disrupt learning-dependent timing of conditioned eyelid responses.
    Perrett SP; Ruiz BP; Mauk MD
    J Neurosci; 1993 Apr; 13(4):1708-18. PubMed ID: 8463846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.