These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 21160004)

  • 41. Kinetics of two voltage-gated K+ conductances in substantia nigra dopaminergic neurons.
    Segev D; Korngreen A
    Brain Res; 2007 Oct; 1173():27-35. PubMed ID: 17826751
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Outward potassium currents activated by depolarization in rat globus pallidus.
    Stefani A; Pisani A; Bonci A; Stratta F; Bernardi G
    Synapse; 1995 Jun; 20(2):131-6. PubMed ID: 7570342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. K(+) channel expression distinguishes subpopulations of parvalbumin- and somatostatin-containing neocortical interneurons.
    Chow A; Erisir A; Farb C; Nadal MS; Ozaita A; Lau D; Welker E; Rudy B
    J Neurosci; 1999 Nov; 19(21):9332-45. PubMed ID: 10531438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Delayed rectifier currents in rat globus pallidus neurons are attributable to Kv2.1 and Kv3.1/3.2 K(+) channels.
    Baranauskas G; Tkatch T; Surmeier DJ
    J Neurosci; 1999 Aug; 19(15):6394-404. PubMed ID: 10414968
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals.
    Brooke RE; Moores TS; Morris NP; Parson SH; Deuchars J
    Eur J Neurosci; 2004 Dec; 20(12):3313-21. PubMed ID: 15610163
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A unique role for Kv3 voltage-gated potassium channels in starburst amacrine cell signaling in mouse retina.
    Ozaita A; Petit-Jacques J; Völgyi B; Ho CS; Joho RH; Bloomfield SA; Rudy B
    J Neurosci; 2004 Aug; 24(33):7335-43. PubMed ID: 15317859
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transient BK outward current enhances motoneurone firing rates during Drosophila larval locomotion.
    Kadas D; Ryglewski S; Duch C
    J Physiol; 2015 Nov; 593(22):4871-88. PubMed ID: 26332699
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Modeling-independent elucidation of inactivation pathways in recombinant and native A-type Kv channels.
    Fineberg JD; Ritter DM; Covarrubias M
    J Gen Physiol; 2012 Nov; 140(5):513-27. PubMed ID: 23109714
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Opposite functions of histamine H1 and H2 receptors and H3 receptor in substantia nigra pars reticulata.
    Zhou FW; Xu JJ; Zhao Y; LeDoux MS; Zhou FM
    J Neurophysiol; 2006 Sep; 96(3):1581-91. PubMed ID: 16738217
    [TBL] [Abstract][Full Text] [Related]  

  • 50. GABAergic control of substantia nigra dopaminergic neurons.
    Tepper JM; Lee CR
    Prog Brain Res; 2007; 160():189-208. PubMed ID: 17499115
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Ionic basis of tonic firing in spinal substantia gelatinosa neurons of rat.
    Melnick IV; Santos SF; Szokol K; Szûcs P; Safronov BV
    J Neurophysiol; 2004 Feb; 91(2):646-55. PubMed ID: 14523064
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Spinal cord interneurones labelled transneuronally from the adrenal gland by a GFP-herpes virus construct contain the potassium channel subunit Kv3.1b.
    Brooke RE; Pyner S; McLeish P; Buchan S; Deuchars J; Deuchars SA
    Auton Neurosci; 2002 Jun; 98(1-2):45-50. PubMed ID: 12144039
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Kv3 K
    Olsen T; Capurro A; Pilati N; Large CH; Hamann M
    Neuropharmacology; 2018 May; 133():319-333. PubMed ID: 29421326
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bursting in substantia nigra pars reticulata neurons in vitro: possible relevance for Parkinson disease.
    Ibáñez-Sandoval O; Carrillo-Reid L; Galarraga E; Tapia D; Mendoza E; Gomora JC; Aceves J; Bargas J
    J Neurophysiol; 2007 Oct; 98(4):2311-23. PubMed ID: 17715194
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Aminoglycosides block the Kv3.1 potassium channel and reduce the ability of inferior colliculus neurons to fire at high frequencies.
    Liu SQ; Kaczmarek LK
    J Neurobiol; 2005 Mar; 62(4):439-52. PubMed ID: 15547932
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrophysiological and pharmacological characterization of a mammalian Shaw channel expressed in NIH 3T3 fibroblasts.
    Kanemasa T; Gan L; Perney TM; Wang LY; Kaczmarek LK
    J Neurophysiol; 1995 Jul; 74(1):207-17. PubMed ID: 7472324
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differential expression of voltage-gated K+ currents in medial septum/diagonal band complex neurons exhibiting distinct firing phenotypes.
    Garrido-Sanabria ER; Perez-Cordova MG; Colom LV
    Neurosci Res; 2011 Aug; 70(4):361-9. PubMed ID: 21624401
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization of voltage-sensitive Na+ and K+ currents recorded from acutely dissociated pelvic ganglion neurons of the adult rat.
    Yoshimura N; De Groat WC
    J Neurophysiol; 1996 Oct; 76(4):2508-21. PubMed ID: 8899623
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Kv3.4 channel function and dysfunction in nociceptors.
    Ritter DM; Zemel BM; Lepore AC; Covarrubias M
    Channels (Austin); 2015; 9(4):209-17. PubMed ID: 26039360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.