These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
293 related articles for article (PubMed ID: 21161096)
1. Transfer hydrogenation of cellulose to sugar alcohols over supported ruthenium catalysts. Kobayashi H; Matsuhashi H; Komanoya T; Hara K; Fukuoka A Chem Commun (Camb); 2011 Feb; 47(8):2366-8. PubMed ID: 21161096 [TBL] [Abstract][Full Text] [Related]
2. Heteropoly acids as efficient acid catalysts in the one-step conversion of cellulose to sugar alcohols. Palkovits R; Tajvidi K; Ruppert AM; Procelewska J Chem Commun (Camb); 2011 Jan; 47(1):576-8. PubMed ID: 21103493 [TBL] [Abstract][Full Text] [Related]
3. Efficient Synthesis of Sugar Alcohols under Mild Conditions Using a Novel Sugar-Selective Hydrogenation Catalyst Based on Ruthenium Valence Regulation. Zhang XJ; Li HW; Bin W; Dou BJ; Chen DS; Cheng XP; Li M; Wang HY; Chen KQ; Jin LQ; Liu ZQ; Zheng YG J Agric Food Chem; 2020 Nov; 68(44):12393-12399. PubMed ID: 33095018 [TBL] [Abstract][Full Text] [Related]
4. Efficient catalytic conversion of concentrated cellulose feeds to hexitols with heteropoly acids and Ru on carbon. Geboers J; Van de Vyver S; Carpentier K; de Blochouse K; Jacobs P; Sels B Chem Commun (Camb); 2010 May; 46(20):3577-9. PubMed ID: 20376382 [TBL] [Abstract][Full Text] [Related]
5. Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal-organic framework hybrid. Chen J; Wang S; Huang J; Chen L; Ma L; Huang X ChemSusChem; 2013 Aug; 6(8):1545-55. PubMed ID: 23619979 [TBL] [Abstract][Full Text] [Related]
6. Direct conversion of cellulose into sorbitol catalyzed by a bifunctional catalyst. Li Z; Liu Y; Liu C; Wu S; Wei W Bioresour Technol; 2019 Feb; 274():190-197. PubMed ID: 30504102 [TBL] [Abstract][Full Text] [Related]
7. Metal particle growth during glucose hydrogenation over Ru/SiO2 evaluated by X-ray absorption spectroscopy and electron microscopy. Maris EP; Ketchie WC; Oleshko V; Davis RJ J Phys Chem B; 2006 Apr; 110(15):7869-76. PubMed ID: 16610884 [TBL] [Abstract][Full Text] [Related]
8. Phase change of nickel phosphide catalysts in the conversion of cellulose into sorbitol. Yang P; Kobayashi H; Hara K; Fukuoka A ChemSusChem; 2012 May; 5(5):920-6. PubMed ID: 22550035 [TBL] [Abstract][Full Text] [Related]
9. Conversion of cellulose to hexitols catalyzed by ionic liquid-stabilized ruthenium nanoparticles and a reversible binding agent. Zhu Y; Kong ZN; Stubbs LP; Lin H; Shen S; Anslyn EV; Maguire JA ChemSusChem; 2010; 3(1):67-70. PubMed ID: 20024980 [No Abstract] [Full Text] [Related]
10. Efficient method for the conversion of agricultural waste into sugar alcohols over supported bimetallic catalysts. Tathod AP; Dhepe PL Bioresour Technol; 2015 Feb; 178():36-44. PubMed ID: 25453932 [TBL] [Abstract][Full Text] [Related]
11. Efficient conversion of d-glucose into d-sorbitol over MCM-41 supported Ru catalyst prepared by a formaldehyde reduction process. Zhang J; Lin L; Zhang J; Shi J Carbohydr Res; 2011 Aug; 346(11):1327-32. PubMed ID: 21601181 [TBL] [Abstract][Full Text] [Related]
12. Hydrogenation of p-chloronitrobenzene over nanostructured-carbon-supported ruthenium catalysts. Oubenali M; Vanucci G; Machado B; Kacimi M; Ziyad M; Faria J; Raspolli-Galetti A; Serp P ChemSusChem; 2011 Jul; 4(7):950-6. PubMed ID: 21656695 [TBL] [Abstract][Full Text] [Related]
13. Liquid-Phase Catalytic Transfer Hydrogenation of Furfural over Homogeneous Lewis Acid-Ru/C Catalysts. Panagiotopoulou P; Martin N; Vlachos DG ChemSusChem; 2015 Jun; 8(12):2046-54. PubMed ID: 26013846 [TBL] [Abstract][Full Text] [Related]
14. The hydrogenation/transfer hydrogenation network: asymmetric hydrogenation of ketones with chiral eta6-arene/N-Tosylethylenediamine-ruthenium(II) catalysts. Ohkuma T; Utsumi N; Tsutsumi K; Murata K; Sandoval C; Noyori R J Am Chem Soc; 2006 Jul; 128(27):8724-5. PubMed ID: 16819854 [TBL] [Abstract][Full Text] [Related]
15. One-pot conversions of raffinose into furfural derivatives and sugar alcohols by using heterogeneous catalysts. Dabral S; Nishimura S; Ebitani K ChemSusChem; 2014 Jan; 7(1):260-7. PubMed ID: 24193816 [TBL] [Abstract][Full Text] [Related]
16. Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. Jae J; Zheng W; Lobo RF; Vlachos DG ChemSusChem; 2013 Jul; 6(7):1158-62. PubMed ID: 23754805 [TBL] [Abstract][Full Text] [Related]
17. Synthesis of isoidide through epimerization of isosorbide using ruthenium on carbon. Le Nôtre J; van Haveren J; van Es DS ChemSusChem; 2013 Apr; 6(4):693-700. PubMed ID: 23457114 [TBL] [Abstract][Full Text] [Related]
18. Efficient ruthenium-catalyzed transfer hydrogenation/hydrogenation of 1,3-cycloalkanediones to 1,3-cycloalkanediols using microwave heating. Leijondahl K; Fransson AB; Bäckvall JE J Org Chem; 2006 Oct; 71(22):8622-5. PubMed ID: 17064043 [TBL] [Abstract][Full Text] [Related]
19. Highly enantioselective hydrogenation of N-aryl imines derived from acetophenones by using Ru-pybox complexes under hydrogenation or transfer hydrogenation conditions in isopropanol. Menéndez-Pedregal E; Vaquero M; Lastra E; Gamasa P; Pizzano A Chemistry; 2015 Jan; 21(2):549-53. PubMed ID: 25413251 [TBL] [Abstract][Full Text] [Related]
20. Tuning the acid/metal balance of carbon nanofiber-supported nickel catalysts for hydrolytic hydrogenation of cellulose. Van de Vyver S; Geboers J; Schutyser W; Dusselier M; Eloy P; Dornez E; Seo JW; Courtin CM; Gaigneaux EM; Jacobs PA; Sels BF ChemSusChem; 2012 Aug; 5(8):1549-58. PubMed ID: 22730195 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]