These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 21161262)
1. No consequences of dietary n-3 polyunsaturated fatty acid deficiency on the severity of scopolamine-induced dry eye. Viau S; Pasquis B; Maire MA; Fourgeux C; Grégoire S; Acar N; Bretillon L; Creuzot-Garcher CP; Joffre C Graefes Arch Clin Exp Ophthalmol; 2011 Apr; 249(4):547-57. PubMed ID: 21161262 [TBL] [Abstract][Full Text] [Related]
2. Efficacy of a 2-month dietary supplementation with polyunsaturated fatty acids in dry eye induced by scopolamine in a rat model. Viau S; Maire MA; Pasquis B; Grégoire S; Acar N; Bron AM; Bretillon L; Creuzot-Garcher CP; Joffre C Graefes Arch Clin Exp Ophthalmol; 2009 Aug; 247(8):1039-50. PubMed ID: 19415319 [TBL] [Abstract][Full Text] [Related]
3. Time course of ocular surface and lacrimal gland changes in a new scopolamine-induced dry eye model. Viau S; Maire MA; Pasquis B; Grégoire S; Fourgeux C; Acar N; Bretillon L; Creuzot-Garcher CP; Joffre C Graefes Arch Clin Exp Ophthalmol; 2008 Jun; 246(6):857-67. PubMed ID: 18357464 [TBL] [Abstract][Full Text] [Related]
4. A Rabbit Dry Eye Model Induced by Subcutaneous Scopolamine. Duan S; Tian B; Huang G; Huang S; Zhou S Curr Eye Res; 2024 Sep; 49(9):905-913. PubMed ID: 38717185 [TBL] [Abstract][Full Text] [Related]
5. Inflammatory cytokine expression on the ocular surface in the Botulium toxin B induced murine dry eye model. Zhu L; Shen J; Zhang C; Park CY; Kohanim S; Yew M; Parker JS; Chuck RS Mol Vis; 2009; 15():250-8. PubMed ID: 19190733 [TBL] [Abstract][Full Text] [Related]
6. Topical omega-3 and omega-6 fatty acids for treatment of dry eye. Rashid S; Jin Y; Ecoiffier T; Barabino S; Schaumberg DA; Dana MR Arch Ophthalmol; 2008 Feb; 126(2):219-25. PubMed ID: 18268213 [TBL] [Abstract][Full Text] [Related]
7. Topical steroid and non-steroidal anti-inflammatory drugs inhibit inflammatory cytokine expression on the ocular surface in the botulinum toxin B-induced murine dry eye model. Zhu L; Zhang C; Chuck RS Mol Vis; 2012; 18():1803-12. PubMed ID: 22815633 [TBL] [Abstract][Full Text] [Related]
8. Lacrimal gland inflammatory cytokine gene expression in the botulinum toxin B-induced murine dry eye model. Park CY; Zhuang W; Lekhanont K; Zhang C; Cano M; Lee WS; Gehlbach PL; Chuck RS Mol Vis; 2007 Nov; 13():2222-32. PubMed ID: 18087241 [TBL] [Abstract][Full Text] [Related]
9. Nutrition for the eye: different susceptibility of the retina and the lacrimal gland to dietary omega-6 and omega-3 polyunsaturated fatty acid incorporation. Schnebelen C; Viau S; Grégoire S; Joffre C; Creuzot-Garcher CP; Bron AM; Bretillon L; Acar N Ophthalmic Res; 2009; 41(4):216-24. PubMed ID: 19451735 [TBL] [Abstract][Full Text] [Related]
10. Effect of Retinol Palmitate on Corneal and Conjunctival Mucin Gene Expression in a Rat Dry Eye Model After Injury. Tabuchi N; Toshida H; Koike D; Odaka A; Suto C; Ohta T; Murakami A J Ocul Pharmacol Ther; 2017; 33(1):24-33. PubMed ID: 28009531 [TBL] [Abstract][Full Text] [Related]
11. Tear Production After Bilateral Main Lacrimal Gland Resection in Rabbits. Bhattacharya D; Ning Y; Zhao F; Stevenson W; Chen R; Zhang J; Wang M Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):7774-83. PubMed ID: 26641554 [TBL] [Abstract][Full Text] [Related]
12. Alpha-lipoic acid restores tear production in an animal model of dry eye. Andrade AS; Salomon TB; Behling CS; Mahl CD; Hackenhaar FS; Putti J; Benfato MS Exp Eye Res; 2014 Mar; 120():1-9. PubMed ID: 24394592 [TBL] [Abstract][Full Text] [Related]
13. Effect of chitosan-N-acetylcysteine conjugate in a mouse model of botulinum toxin B-induced dry eye. Hongyok T; Chae JJ; Shin YJ; Na D; Li L; Chuck RS Arch Ophthalmol; 2009 Apr; 127(4):525-32. PubMed ID: 19365035 [TBL] [Abstract][Full Text] [Related]
14. Therapeutic effect of topical adiponectin in a mouse model of desiccating stress-induced dry eye. Li Z; Woo JM; Chung SW; Kwon MY; Choi JS; Oh HJ; Yoon KC Invest Ophthalmol Vis Sci; 2013 Jan; 54(1):155-62. PubMed ID: 23211823 [TBL] [Abstract][Full Text] [Related]
15. Interleukin-1 receptor-1-deficient mice show attenuated production of ocular surface inflammatory cytokines in experimental dry eye. Narayanan S; Corrales RM; Farley W; McDermott AM; Pflugfelder SC Cornea; 2008 Aug; 27(7):811-7. PubMed ID: 18650668 [TBL] [Abstract][Full Text] [Related]
16. Optimization and validation of an existing, surgical and robust dry eye rat model for the evaluation of therapeutic compounds. Joossen C; Lanckacker E; Zakaria N; Koppen C; Joossens J; Cools N; De Meester I; Lambeir AM; Delputte P; Maes L; Cos P Exp Eye Res; 2016 May; 146():172-178. PubMed ID: 26995142 [TBL] [Abstract][Full Text] [Related]
17. Experimental dry eye stimulates production of inflammatory cytokines and MMP-9 and activates MAPK signaling pathways on the ocular surface. Luo L; Li DQ; Doshi A; Farley W; Corrales RM; Pflugfelder SC Invest Ophthalmol Vis Sci; 2004 Dec; 45(12):4293-301. PubMed ID: 15557435 [TBL] [Abstract][Full Text] [Related]
18. Interleukin-1β and tumour necrosis factor-α levels in conjunctiva of diabetic patients with symptomatic moderate dry eye: case-control study. Zhang C; Xi L; Zhao S; Wei R; Huang Y; Yang R; Su L; Liu X BMJ Open; 2016 Aug; 6(8):e010979. PubMed ID: 27489152 [TBL] [Abstract][Full Text] [Related]
19. The Effect of the Aqueous Extract of Bidens Pilosa L. on Androgen Deficiency Dry Eye in Rats. Zhang C; Li K; Yang Z; Wang Y; Si H Cell Physiol Biochem; 2016; 39(1):266-77. PubMed ID: 27337217 [TBL] [Abstract][Full Text] [Related]
20. Dynamic ocular surface and lacrimal gland changes induced in experimental murine dry eye. Xiao B; Wang Y; Reinach PS; Ren Y; Li J; Hua S; Lu H; Chen W PLoS One; 2015; 10(1):e0115333. PubMed ID: 25590134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]