These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21161399)

  • 1. An efficient protocol for genetic transformation of watercress (Nasturtium officinale) using Agrobacterium rhizogenes.
    Park NI; Kim JK; Park WT; Cho JW; Lim YP; Park SU
    Mol Biol Rep; 2011 Nov; 38(8):4947-53. PubMed ID: 21161399
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformation of Nasturtium officinale, Barbarea verna and Arabis caucasica for hairy roots and glucosinolate-myrosinase system production.
    Wielanek M; Królicka A; Bergier K; Gajewska E; Skłodowska M
    Biotechnol Lett; 2009 Jun; 31(6):917-21. PubMed ID: 19229477
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Glucosinolate Production in Watercress ( Nasturtium officinale) Hairy Roots by Overexpressing Cabbage Transcription Factors.
    Cuong DM; Park CH; Bong SJ; Kim NS; Kim JK; Park SU
    J Agric Food Chem; 2019 May; 67(17):4860-4867. PubMed ID: 30973222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R. Br.).
    Jeon J; Bong SJ; Park JS; Park YK; Arasu MV; Al-Dhabi NA; Park SU
    BMC Genomics; 2017 May; 18(1):401. PubMed ID: 28535746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An protocol for genetic transformation of Catharanthus roseus by Agrobacterium rhizogenes A4.
    Zhou ML; Zhu XM; Shao JR; Wu YM; Tang YX
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1674-84. PubMed ID: 22328251
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative analysis of glucosinolate production in hairy roots of green and red kale (
    Cuong DM; Park SU; Park CH; Kim NS; Bong SJ; Lee SY
    Prep Biochem Biotechnol; 2019; 49(8):775-782. PubMed ID: 31124740
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrobacterium rhizogenes-mediated transformation of opium poppy, Papaver somniferum l., and California poppy, Eschscholzia californica cham., root cultures.
    Park SU; Facchini PJ
    J Exp Bot; 2000 Jun; 51(347):1005-16. PubMed ID: 10948228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.).
    Kopsell DA; Barickman TC; Sams CE; McElroy JS
    J Agric Food Chem; 2007 Dec; 55(26):10628-34. PubMed ID: 18052091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparison study of Agrobacterium-mediated transformation methods for root-specific promoter analysis in soybean.
    Li C; Zhang H; Wang X; Liao H
    Plant Cell Rep; 2014 Nov; 33(11):1921-32. PubMed ID: 25097075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Establishment of transgenic Rhazya stricta hairy roots to modulate terpenoid indole alkaloid production.
    Akhgari A; Yrjönen T; Laakso I; Vuorela H; Oksman-Caldentey KM; Rischer H
    Plant Cell Rep; 2015 Nov; 34(11):1939-52. PubMed ID: 26245531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific glucosinolate analysis reveals variable levels of epimeric glucobarbarins, dietary precursors of 5-phenyloxazolidine-2-thiones, in watercress types with contrasting chromosome numbers.
    Agerbirk N; Olsen CE; Cipollini D; Ørgaard M; Linde-Laursen I; Chew FS
    J Agric Food Chem; 2014 Oct; 62(39):9586-96. PubMed ID: 25226408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the watercress (Nasturtium officinale R. Br.; Brassicaceae) transcriptome using RNASeq and identification of candidate genes for important phytonutrient traits linked to human health.
    Voutsina N; Payne AC; Hancock RD; Clarkson GJ; Rothwell SD; Chapman MA; Taylor G
    BMC Genomics; 2016 May; 17():378. PubMed ID: 27206485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Stable Catharanthus roseus Hairy Root Lines with Agrobacterium rhizogenes.
    Traverse KKF; Mortensen S; Trautman JG; Danison H; Rizvi NF; Lee-Parsons CWT
    Methods Mol Biol; 2022; 2469():129-144. PubMed ID: 35508835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient protocol for genetic transformation of Platycodon grandiflorum with Agrobacterium rhizogenes.
    Park NI; Tuan PA; Li X; Kim YK; Yang TJ; Park SU
    Mol Biol Rep; 2011 Apr; 38(4):2307-13. PubMed ID: 21052843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Agrobacterium rhizogenes-mediated transformation of grain (Amaranthus hypochondriacus) and leafy (A. hybridus) amaranths.
    Castellanos-Arévalo AP; Estrada-Luna AA; Cabrera-Ponce JL; Valencia-Lozano E; Herrera-Ubaldo H; de Folter S; Blanco-Labra A; Délano-Frier JP
    Plant Cell Rep; 2020 Sep; 39(9):1143-1160. PubMed ID: 32430681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sonication-assisted Agrobacterium rhizogenes-mediated transformation of Verbascum xanthophoeniceum Griseb. for bioactive metabolite accumulation.
    Georgiev MI; Ludwig-Müller J; Alipieva K; Lippert A
    Plant Cell Rep; 2011 May; 30(5):859-66. PubMed ID: 21184229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic transformation of Echinacea purpurea with Agrobacterium rhizogenes and bioactive ingredient analysis in transformed cultures.
    Wang B; Zhang G; Zhu L; Chen L; Zhang Y
    Colloids Surf B Biointerfaces; 2006 Nov; 53(1):101-4. PubMed ID: 16982176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of hairy root cultures by Agrobacterium rhizogenes mediated transformation of Trachyspermum ammi L. for the efficient production of thymol.
    Vamenani R; Pakdin-Parizi A; Mortazavi M; Gholami Z
    Biotechnol Appl Biochem; 2020 May; 67(3):389-395. PubMed ID: 31891201
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducing Hairy Roots by Agrobacterium rhizogenes-Mediated Transformation in Tartary Buckwheat (Fagopyrum tataricum).
    Mi Y; Zhu Z; Qian G; Li Y; Meng X; Xue J; Chen Q; Sun W; Shi Y
    J Vis Exp; 2020 Mar; (157):. PubMed ID: 32225142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrobacterium rhizogenes-dependent production of transformed roots from foliar explants of pepper (Capsicum annuum): a new and efficient tool for functional analysis of genes.
    Aarrouf J; Castro-Quezada P; Mallard S; Caromel B; Lizzi Y; Lefebvre V
    Plant Cell Rep; 2012 Feb; 31(2):391-401. PubMed ID: 22016085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.