These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21161523)

  • 1. QCM-D fingerprinting of membrane-active peptides.
    McCubbin GA; Praporski S; Piantavigna S; Knappe D; Hoffmann R; Bowie JH; Separovic F; Martin LL
    Eur Biophys J; 2011 Apr; 40(4):437-46. PubMed ID: 21161523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of membrane composition on antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
    Cheng JT; Hale JD; Elliot M; Hancock RE; Straus SK
    Biophys J; 2009 Jan; 96(2):552-65. PubMed ID: 19167304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure and membrane interactions of the antimicrobial peptide fallaxidin 4.1a: an NMR and QCM study.
    Sherman PJ; Jackway RJ; Gehman JD; Praporski S; McCubbin GA; Mechler A; Martin LL; Separovic F; Bowie JH
    Biochemistry; 2009 Dec; 48(50):11892-901. PubMed ID: 19894755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiating antimicrobial peptides interacting with lipid bilayer: Molecular signatures derived from quartz crystal microbalance with dissipation monitoring.
    Wang KF; Nagarajan R; Camesano TA
    Biophys Chem; 2015 Jan; 196():53-67. PubMed ID: 25307196
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Membrane defects enhance the interaction of antimicrobial peptides, aurein 1.2 versus caerin 1.1.
    Fernandez DI; Sani MA; Miles AJ; Wallace BA; Separovic F
    Biochim Biophys Acta; 2013 Aug; 1828(8):1863-72. PubMed ID: 23506683
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ib-AMP4 insertion causes surface rearrangement in the phospholipid bilayer of biomembranes: Implications from quartz-crystal microbalance with dissipation.
    Fan X; Korytowski A; Makky A; Tanaka M; Wink M
    Biochim Biophys Acta Biomembr; 2018 Feb; 1860(2):617-623. PubMed ID: 29106975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of supported lipid bilayer disruption by chrysophsin-3 using QCM-D.
    Wang KF; Nagarajan R; Mello CM; Camesano TA
    J Phys Chem B; 2011 Dec; 115(51):15228-35. PubMed ID: 22085290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proposed Mechanisms of Tethered Antimicrobial Peptide Chrysophsin-1 as a Function of Tether Length Using QCM-D.
    Lozeau LD; Alexander TE; Camesano TA
    J Phys Chem B; 2015 Oct; 119(41):13142-51. PubMed ID: 26388176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controls and constrains of the membrane disrupting action of Aurein 1.2.
    Shahmiri M; Enciso M; Mechler A
    Sci Rep; 2015 Nov; 5():16378. PubMed ID: 26574052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism.
    Fernandez DI; Le Brun AP; Whitwell TC; Sani MA; James M; Separovic F
    Phys Chem Chem Phys; 2012 Dec; 14(45):15739-51. PubMed ID: 23093307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of the structure and membrane interaction of the antimicrobial peptides aurein 2.2 and 2.3 from Australian southern bell frogs.
    Pan YL; Cheng JT; Hale J; Pan J; Hancock RE; Straus SK
    Biophys J; 2007 Apr; 92(8):2854-64. PubMed ID: 17259271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis.
    Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI
    Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time examination of aminoglycoside activity towards bacterial mimetic membranes using Quartz Crystal Microbalance with Dissipation monitoring (QCM-D).
    Joshi T; Voo ZX; Graham B; Spiccia L; Martin LL
    Biochim Biophys Acta; 2015 Feb; 1848(2):385-91. PubMed ID: 25450807
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of a synthetic Leu-Lys-rich antimicrobial peptide with phospholipid bilayers.
    Fernandez DI; Sani MA; Gehman JD; Hahm KS; Separovic F
    Eur Biophys J; 2011 Apr; 40(4):471-80. PubMed ID: 21225256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of amidation on the behaviour of antimicrobial peptides.
    Mura M; Wang J; Zhou Y; Pinna M; Zvelindovsky AV; Dennison SR; Phoenix DA
    Eur Biophys J; 2016 Apr; 45(3):195-207. PubMed ID: 26745958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of membrane curvature on the conformation of antimicrobial peptides: implications for binding and the mechanism of action.
    Chen R; Mark AE
    Eur Biophys J; 2011 Apr; 40(4):545-53. PubMed ID: 21267557
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylalanine residues act as membrane anchors in the antimicrobial action of Aurein 1.2.
    Shahmiri M; Cornell B; Mechler A
    Biointerphases; 2017 Oct; 12(5):05G605. PubMed ID: 29078702
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assembly of streptolysin O pores assessed by quartz crystal microbalance and atomic force microscopy provides evidence for the formation of anchored but incomplete oligomers.
    Stewart SE; D'Angelo ME; Paintavigna S; Tabor RF; Martin LL; Bird PI
    Biochim Biophys Acta; 2015 Jan; 1848(1 Pt A):115-26. PubMed ID: 25312695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quartz Crystal Microbalances as Tools for Probing Protein-Membrane Interactions.
    Nielsen SB; Otzen DE
    Methods Mol Biol; 2019; 2003():31-52. PubMed ID: 31218612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The importance of bacterial membrane composition in the structure and function of aurein 2.2 and selected variants.
    Cheng JT; Hale JD; Elliott M; Hancock RE; Straus SK
    Biochim Biophys Acta; 2011 Mar; 1808(3):622-33. PubMed ID: 21144817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.