BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 21161562)

  • 1. Prediction of fibre architecture and adaptation in diseased carotid bifurcations.
    Creane A; Maher E; Sultan S; Hynes N; Kelly DJ; Lally C
    Biomech Model Mechanobiol; 2011 Dec; 10(6):831-43. PubMed ID: 21161562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A remodelling metric for angular fibre distributions and its application to diseased carotid bifurcations.
    Creane A; Maher E; Sultan S; Hynes N; Kelly DJ; Lally C
    Biomech Model Mechanobiol; 2012 Jul; 11(6):869-82. PubMed ID: 22086167
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example.
    Kiousis DE; Rubinigg SF; Auer M; Holzapfel GA
    J Biomech Eng; 2009 Dec; 131(12):121002. PubMed ID: 20524725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries.
    Glagov S; Zarins C; Giddens DP; Ku DN
    Arch Pathol Lab Med; 1988 Oct; 112(10):1018-31. PubMed ID: 3052352
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of reproducibility of human arterial plaque reconstruction and its effects on stress analysis based on multispectral in vivo magnetic resonance imaging.
    Gao H; Long Q; Graves M; Gillard JH; Li ZY
    J Magn Reson Imaging; 2009 Jul; 30(1):85-93. PubMed ID: 19557850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A volumetric model for growth of arterial walls with arbitrary geometry and loads.
    Rodríguez J; Goicolea JM; Gabaldón F
    J Biomech; 2007; 40(5):961-71. PubMed ID: 16797020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Collagen Fibre Remodelling Rupture Risk Metric for Potentially Vulnerable Carotid Artery Atherosclerotic Plaques.
    Ghasemi M; Johnston RD; Lally C
    Front Physiol; 2021; 12():718470. PubMed ID: 34776999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models.
    Kock SA; Nygaard JV; Eldrup N; Fründ ET; Klaerke A; Paaske WP; Falk E; Yong Kim W
    J Biomech; 2008; 41(8):1651-8. PubMed ID: 18485351
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of varied lipid core volume and fibrous cap thickness on stress distribution in carotid arterial plaques.
    Gao H; Long Q
    J Biomech; 2008 Oct; 41(14):3053-9. PubMed ID: 18786671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the mechanical behaviour of carotid artery plaques: the influence of curve-fitting experimental data on numerical model results.
    Mulvihill JJ; Walsh MT
    Biomech Model Mechanobiol; 2013 Oct; 12(5):975-85. PubMed ID: 23192833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stress-modulated collagen fiber remodeling in a human carotid bifurcation.
    Hariton I; deBotton G; Gasser TC; Holzapfel GA
    J Theor Biol; 2007 Oct; 248(3):460-70. PubMed ID: 17631909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distribution of wall shear stress in carotid plaques using magnetic resonance imaging and computational fluid dynamics analysis: a preliminary study.
    Jing LN; Gao PY; Lin Y; Sui BB; Qin HQ; Ma L; Xue J
    Chin Med J (Engl); 2011 May; 124(10):1465-9. PubMed ID: 21740799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local anisotropic mechanical properties of human carotid atherosclerotic plaques - characterisation by micro-indentation and inverse finite element analysis.
    Chai CK; Akyildiz AC; Speelman L; Gijsen FJ; Oomens CW; van Sambeek MR; van der Lugt A; Baaijens FP
    J Mech Behav Biomed Mater; 2015 Mar; 43():59-68. PubMed ID: 25553556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Finite element modelling of diseased carotid bifurcations generated from in vivo computerised tomographic angiography.
    Creane A; Maher E; Sultan S; Hynes N; Kelly DJ; Lally C
    Comput Biol Med; 2010 Apr; 40(4):419-29. PubMed ID: 20211465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental determination of circumferential properties of fresh carotid artery plaques.
    Lawlor MG; O'Donnell MR; O'Connell BM; Walsh MT
    J Biomech; 2011 Jun; 44(9):1709-15. PubMed ID: 21497353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tensile and compressive properties of fresh human carotid atherosclerotic plaques.
    Maher E; Creane A; Sultan S; Hynes N; Lally C; Kelly DJ
    J Biomech; 2009 Dec; 42(16):2760-7. PubMed ID: 19766226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational stress-deformation analysis of arterial walls including high-pressure response.
    Holzapfel GA; Gasser TC
    Int J Cardiol; 2007 Mar; 116(1):78-85. PubMed ID: 16822562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A finite element model of the human left ventricular systole.
    Dorri F; Niederer PF; Lunkenheimer PP
    Comput Methods Biomech Biomed Engin; 2006 Oct; 9(5):319-41. PubMed ID: 17132618
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preliminary study of hemodynamic distribution in patient-specific stenotic carotid bifurcation by image-based computational fluid dynamics.
    Xue YJ; Gao PY; Duan Q; Lin Y; Dai CB
    Acta Radiol; 2008 Jun; 49(5):558-65. PubMed ID: 18568543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial cell morphologic response to asymmetric stenosis hemodynamics: effects of spatial wall shear stress gradients.
    Rouleau L; Farcas M; Tardif JC; Mongrain R; Leask RL
    J Biomech Eng; 2010 Aug; 132(8):081013. PubMed ID: 20670062
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.