These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 21161797)

  • 21. Determination of human arterial wall parameters from clinical data.
    Stålhand J
    Biomech Model Mechanobiol; 2009 Apr; 8(2):141-8. PubMed ID: 18347824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Constitutive formulation and analysis of heel pad tissues mechanics.
    Natali AN; Fontanella CG; Carniel EL
    Med Eng Phys; 2010 Jun; 32(5):516-22. PubMed ID: 20304698
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A new three-dimensional exponential material model of the coronary arterial wall to include shear stress due to torsion.
    Van Epps JS; Vorp DA
    J Biomech Eng; 2008 Oct; 130(5):051001. PubMed ID: 19045508
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Experimental and numerical studies of two arterial wall delamination modes.
    Leng X; Zhou B; Deng X; Davis L; Lessner SM; Sutton MA; Shazly T
    J Mech Behav Biomed Mater; 2018 Jan; 77():321-330. PubMed ID: 28963936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On Eulerian constitutive equations for modeling growth and residual stresses in arteries.
    Volokh KY
    Mech Chem Biosyst; 2005 Jun; 2(2):77-86. PubMed ID: 16783929
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microplane constitutive model and computational framework for blood vessel tissue.
    Caner FC; Carol I
    J Biomech Eng; 2006 Jun; 128(3):419-27. PubMed ID: 16706591
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stomach stress and strain depend on location, direction and the layered structure.
    Zhao J; Liao D; Chen P; Kunwald P; Gregersen H
    J Biomech; 2008 Dec; 41(16):3441-7. PubMed ID: 19004444
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale, structure-based modeling for the elastic mechanical behavior of arterial walls.
    Stylianopoulos T; Barocas VH
    J Biomech Eng; 2007 Aug; 129(4):611-8. PubMed ID: 17655483
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Aorta in vivo parameter identification using an axial force constraint.
    Stålhand J; Klarbring A
    Biomech Model Mechanobiol; 2005 Jun; 3(4):191-9. PubMed ID: 15776254
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of Arterial Hyperelastic Models to Uncertainties in Stress-Free Measurements.
    Emuna N; Durban D; Osovski S
    J Biomech Eng; 2018 Oct; 140(10):. PubMed ID: 30029245
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Constitutive modeling of the stress-strain behavior of F-actin filament networks.
    Palmer JS; Boyce MC
    Acta Biomater; 2008 May; 4(3):597-612. PubMed ID: 18325860
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Blunt trauma and acute aortic syndrome: a three-layer finite-element model of the aortic wall.
    Zhao AR; Field ML; Digges K; Richens D
    Eur J Cardiothorac Surg; 2008 Sep; 34(3):623-9. PubMed ID: 18539473
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms.
    Vande Geest JP; Sacks MS; Vorp DA
    J Biomech; 2006; 39(13):2347-54. PubMed ID: 16872617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On parameter estimation for biaxial mechanical behavior of arteries.
    Zeinali-Davarani S; Choi J; Baek S
    J Biomech; 2009 Mar; 42(4):524-30. PubMed ID: 19159887
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A visco-hyperelastic-damage constitutive model for the analysis of the biomechanical response of the periodontal ligament.
    Natali AN; Carniel EL; Pavan PG; Sander FG; Dorow C; Geiger M
    J Biomech Eng; 2008 Jun; 130(3):031004. PubMed ID: 18532853
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the biaxial mechanical properties of the layers of the aortic valve leaflet.
    Stella JA; Sacks MS
    J Biomech Eng; 2007 Oct; 129(5):757-66. PubMed ID: 17887902
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical response of an artery using a standard nonlinear solid.
    Veress AI; Anderson PM; Cornhill JF; Thomas JD
    Biomed Sci Instrum; 1997; 34():212-7. PubMed ID: 9603041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical characterization of human dura mater.
    De Kegel D; Vastmans J; Fehervary H; Depreitere B; Vander Sloten J; Famaey N
    J Mech Behav Biomed Mater; 2018 Mar; 79():122-134. PubMed ID: 29294435
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Abdominal aortic aneurysm risk of rupture: patient-specific FSI simulations using anisotropic model.
    Rissland P; Alemu Y; Einav S; Ricotta J; Bluestein D
    J Biomech Eng; 2009 Mar; 131(3):031001. PubMed ID: 19154060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.