These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 21162292)

  • 41. The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners.
    Truijens MJ; Rodríguez FA; Townsend NE; Stray-Gundersen J; Gore CJ; Levine BD
    J Appl Physiol (1985); 2008 Feb; 104(2):328-37. PubMed ID: 18048583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of acute hemoconcentration in bullfrogs in response to hypoxemia.
    Pinder AW; Smits AW
    Am J Physiol; 1993 Apr; 264(4 Pt 2):R687-95. PubMed ID: 8476111
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The haematological and cardiac patterns of adaptation of rabbits to 4,500 m simulated altitude and of readaptation to 400 m.
    Märki U; Weihe WH; Schneider J; Stranzinger G
    Res Exp Med (Berl); 1982; 181(3):197-204. PubMed ID: 6219443
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effects of elevated-hematocrit levels on pulmonary circulation in conscious sheep.
    Sakai A; Ueda G; Kobayashi T; Kubo K; Fukushima M; Yoshimura K; Shibamoto T; Kusama S
    Jpn J Physiol; 1984; 34(5):871-82. PubMed ID: 6241951
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Depressed myocardial function in the goat at high altitude.
    Tucker CE; James WE; Berry MA; Johnstone CJ; Grover RF
    J Appl Physiol; 1976 Sep; 41(3):356-61. PubMed ID: 965304
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pressure-flow relationships in the isolated altitude-acclimatized hindlimb.
    Smith EE; Shepherd AP
    Am J Physiol; 1974 May; 226(5):1204-8. PubMed ID: 4824872
    [No Abstract]   [Full Text] [Related]  

  • 47. Increase in testicular temperature and vascularization induced by hypobaric hypoxia in rats.
    Farías JG; Bustos-Obregón E; Reyes JG
    J Androl; 2005; 26(6):693-7. PubMed ID: 16291963
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cardiac output, arterial and mixed-venous O 2 saturation, and blood O 2 dissociation curve in growing rats adapted to a simulated altitude of 3500 m.
    Turek Z; Ringnalda BE; Hoofd LJ; Frans A; Kreuzer F
    Pflugers Arch; 1972; 335(1):10-8. PubMed ID: 4672601
    [No Abstract]   [Full Text] [Related]  

  • 49. Effect of normovolemic hematocrit changes on blood pressure and flow.
    Bonnin P; Vilar J; Levy BI
    Life Sci; 2016 Jul; 157():62-66. PubMed ID: 27142829
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Effect of aminophylline on physiological and pathological changes in acute exposure to high altitude in rats].
    Wang C; Wang R; Xie H; Yin Q; Jia Z; Li W; Wang Y; Lu H; Tao R
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2015 Jan; 40(1):39-45. PubMed ID: 25652383
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Blood viscosity in chronically hypoxic rats: an effect independent of packed cell volume.
    Fedde MR; Koehler JA; Wood SC; Gonzalez NC
    Respir Physiol; 1996; 104(1):45-52. PubMed ID: 8865381
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Acute normobaric hypoxia does not increase blood or plasma viscosity.
    Buono M; Rostomily K
    Clin Hemorheol Microcirc; 2021; 78(4):461-464. PubMed ID: 33935068
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Telomeres are elongated in rats exposed to moderate altitude.
    Wang Y; Zhou WD; Yang Y; Ma L; Zhao Y; Bai Z; Ge RL
    J Physiol Anthropol; 2014 Jul; 33(1):19. PubMed ID: 24996852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Changes in blood viscosity with heavy and light exercise.
    Hitosugi M; Kawato H; Nagai T; Ogawa Y; Niwa M; Iida N; Yufu T; Tokudome S
    Med Sci Law; 2004 Jul; 44(3):197-200. PubMed ID: 15296241
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Animal adaptation to high altitude hypoxia].
    Yuan QY; Xie Z
    Sheng Li Ke Xue Jin Zhan; 2005 Apr; 36(2):179-82. PubMed ID: 16222986
    [No Abstract]   [Full Text] [Related]  

  • 56. Prediction of Blood Viscosity Based on Usual Hematological Parameters in a Clinically Healthy Population Living in a High-Altitude City.
    Huamaní C; Sarmiento W; Cordova-Heredia G; Cruz-Huanca L; Damian-Saavedra P; Antonio D
    High Alt Med Biol; 2022 Mar; 23(1):78-84. PubMed ID: 35271375
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Methemoglobin in hypoxic rats.
    Olander CP; Parr CE
    Experientia; 1977 Dec; 33(12):1656-7. PubMed ID: 590469
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Influence of temperature and hematocrit on blood viscosity.
    Snyder GK
    Am J Physiol; 1971 Jun; 220(6):1667-72. PubMed ID: 5087815
    [No Abstract]   [Full Text] [Related]  

  • 59. Renal function in the dog during increased blood viscosity produced by simulated altitude exposure.
    MARSHALL LH; HANNA CH; SPECHT H
    Am J Physiol; 1952 Nov; 171(2):499-506. PubMed ID: 13007823
    [No Abstract]   [Full Text] [Related]  

  • 60. Don't stop at the top: plasma volume expansion and pulmonary vasodilatation restore left ventricular function at rest but not during exercise at high altitude.
    Karvasarski E; Azevedo L; Granton D; Wright SP
    J Physiol; 2019 Feb; 597(4):995-996. PubMed ID: 30334257
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.