BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 21162670)

  • 1. Does high firing irregularity enhance learning?
    Christodoulou C; Cleanthous A
    Neural Comput; 2011 Mar; 23(3):656-63. PubMed ID: 21162670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning optimisation by high firing irregularity.
    Cleanthous A; Christodoulou C
    Brain Res; 2012 Jan; 1434():115-22. PubMed ID: 21840508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reinforcement learning through modulation of spike-timing-dependent synaptic plasticity.
    Florian RV
    Neural Comput; 2007 Jun; 19(6):1468-502. PubMed ID: 17444757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiagent reinforcement learning: spiking and nonspiking agents in the iterated Prisoner's Dilemma.
    Vassiliades V; Cleanthous A; Christodoulou C
    IEEE Trans Neural Netw; 2011 Apr; 22(4):639-53. PubMed ID: 21421435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiking neural networks with different reinforcement learning (RL) schemes in a multiagent setting.
    Christodoulou C; Cleanthous A
    Chin J Physiol; 2010 Dec; 53(6):447-53. PubMed ID: 21793357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-control with spiking and non-spiking neural networks playing games.
    Christodoulou C; Banfield G; Cleanthous A
    J Physiol Paris; 2010; 104(3-4):108-17. PubMed ID: 19944157
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A learning theory for reward-modulated spike-timing-dependent plasticity with application to biofeedback.
    Legenstein R; Pecevski D; Maass W
    PLoS Comput Biol; 2008 Oct; 4(10):e1000180. PubMed ID: 18846203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distinguishing the causes of firing with the membrane potential slope.
    Koutsou A; Christodoulou C; Bugmann G; Kanev J
    Neural Comput; 2012 Sep; 24(9):2318-45. PubMed ID: 22594827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neuron as a reward-modulated combinatorial switch and a model of learning behavior.
    Rvachev MM
    Neural Netw; 2013 Oct; 46():62-74. PubMed ID: 23708671
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.
    Jackson BS
    Neural Comput; 2004 Oct; 16(10):2125-95. PubMed ID: 15333210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A gradient learning rule for the tempotron.
    Urbanczik R; Senn W
    Neural Comput; 2009 Feb; 21(2):340-52. PubMed ID: 19431262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Introduction to spiking neural networks: Information processing, learning and applications.
    Ponulak F; Kasinski A
    Acta Neurobiol Exp (Wars); 2011; 71(4):409-33. PubMed ID: 22237491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning spike-based population codes by reward and population feedback.
    Friedrich J; Urbanczik R; Senn W
    Neural Comput; 2010 Jul; 22(7):1698-717. PubMed ID: 20235820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational properties of networks of synchronous groups of spiking neurons.
    Dayhoff JE
    Neural Comput; 2007 Sep; 19(9):2433-67. PubMed ID: 17650065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving the distal reward problem with rare correlations.
    Soltoggio A; Steil JJ
    Neural Comput; 2013 Apr; 25(4):940-78. PubMed ID: 23339615
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-organizing spiking neural model for learning fault-tolerant spatio-motor transformations.
    Srinivasa N; Cho Y
    IEEE Trans Neural Netw Learn Syst; 2012 Oct; 23(10):1526-38. PubMed ID: 24807999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity.
    Song S; Miller KD; Abbott LF
    Nat Neurosci; 2000 Sep; 3(9):919-26. PubMed ID: 10966623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic dynamics: linear model and adaptation algorithm.
    Yousefi A; Dibazar AA; Berger TW
    Neural Netw; 2014 Aug; 56():49-68. PubMed ID: 24867390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spike-timing error backpropagation in theta neuron networks.
    McKennoch S; Voegtlin T; Bushnell L
    Neural Comput; 2009 Jan; 21(1):9-45. PubMed ID: 19431278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive dependence of the coefficient of variation of interspike intervals on the lower boundary of membrane potential for the leaky integrate-and-fire neuron model.
    Inoue J; Doi S
    Biosystems; 2007 Jan; 87(1):49-57. PubMed ID: 16675100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.