These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 21163354)

  • 1. Use of RNA structure flexibility data in nanostructure modeling.
    Kasprzak W; Bindewald E; Kim TJ; Jaeger L; Shapiro BA
    Methods; 2011 Jun; 54(2):239-50. PubMed ID: 21163354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational strategies for the automated design of RNA nanoscale structures from building blocks using NanoTiler.
    Bindewald E; Grunewald C; Boyle B; O'Connor M; Shapiro BA
    J Mol Graph Model; 2008 Oct; 27(3):299-308. PubMed ID: 18838281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triggering nucleic acid nanostructure assembly by conditional kissing interactions.
    Azéma L; Bonnet-Salomon S; Endo M; Takeuchi Y; Durand G; Emura T; Hidaka K; Dausse E; Sugiyama H; Toulmé JJ
    Nucleic Acids Res; 2018 Feb; 46(3):1052-1058. PubMed ID: 29272518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNAJunction: a database of RNA junctions and kissing loops for three-dimensional structural analysis and nanodesign.
    Bindewald E; Hayes R; Yingling YG; Kasprzak W; Shapiro BA
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D392-7. PubMed ID: 17947325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures.
    Liu D; Geary CW; Chen G; Shao Y; Li M; Mao C; Andersen ES; Piccirilli JA; Rothemund PWK; Weizmann Y
    Nat Chem; 2020 Mar; 12(3):249-259. PubMed ID: 31959958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational and experimental characterization of RNA cubic nanoscaffolds.
    Afonin KA; Kasprzak W; Bindewald E; Puppala PS; Diehl AR; Hall KT; Kim TJ; Zimmermann MT; Jernigan RL; Jaeger L; Shapiro BA
    Methods; 2014 May; 67(2):256-65. PubMed ID: 24189588
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An RNA Paranemic Crossover Triangle as A 3D Module for Cotranscriptional Nanoassembly.
    Sampedro Vallina N; McRae EKS; Geary C; Andersen ES
    Small; 2023 Mar; 19(13):e2204651. PubMed ID: 36526605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ring Catalog: A resource for designing self-assembling RNA nanostructures.
    Parlea L; Bindewald E; Sharan R; Bartlett N; Moriarty D; Oliver J; Afonin KA; Shapiro BA
    Methods; 2016 Jul; 103():128-37. PubMed ID: 27090005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure.
    Takeuchi Y; Endo M; Suzuki Y; Hidaka K; Durand G; Dausse E; Toulmé JJ; Sugiyama H
    Biomater Sci; 2016 Jan; 4(1):130-5. PubMed ID: 26438892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algorithmic Design of 3D Wireframe RNA Polyhedra.
    Elonen A; Natarajan AK; Kawamata I; Oesinghaus L; Mohammed A; Seitsonen J; Suzuki Y; Simmel FC; Kuzyk A; Orponen P
    ACS Nano; 2022 Oct; 16(10):16608-16616. PubMed ID: 36178116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures.
    Kim DN; Kilchherr F; Dietz H; Bathe M
    Nucleic Acids Res; 2012 Apr; 40(7):2862-8. PubMed ID: 22156372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA nanotechnology: engineering, assembly and applications in detection, gene delivery and therapy.
    Guo P
    J Nanosci Nanotechnol; 2005 Dec; 5(12):1964-82. PubMed ID: 16430131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of four-way junctions in RNA structures.
    Laing C; Schlick T
    J Mol Biol; 2009 Jul; 390(3):547-59. PubMed ID: 19445952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA self-assembly and RNA nanotechnology.
    Grabow WW; Jaeger L
    Acc Chem Res; 2014 Jun; 47(6):1871-80. PubMed ID: 24856178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multistrand RNA secondary structure prediction and nanostructure design including pseudoknots.
    Bindewald E; Afonin K; Jaeger L; Shapiro BA
    ACS Nano; 2011 Dec; 5(12):9542-51. PubMed ID: 22067111
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA-DNA kissing complexes as a new tool for the assembly of DNA nanostructures.
    Barth A; Kobbe D; Focke M
    Nucleic Acids Res; 2016 Feb; 44(4):1502-13. PubMed ID: 26773051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wireframe and tensegrity DNA nanostructures.
    Simmel SS; Nickels PC; Liedl T
    Acc Chem Res; 2014 Jun; 47(6):1691-9. PubMed ID: 24720250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Composing RNA Nanostructures from a Syntax of RNA Structural Modules.
    Geary C; Chworos A; Verzemnieks E; Voss NR; Jaeger L
    Nano Lett; 2017 Nov; 17(11):7095-7101. PubMed ID: 29039189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated 3D Design and Evaluation of RNA Nanostructures with RNAMake.
    Jurich CP; Yesselman JD
    Methods Mol Biol; 2023; 2586():251-261. PubMed ID: 36705909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The molecular interactions that stabilize RNA tertiary structure: RNA motifs, patterns, and networks.
    Butcher SE; Pyle AM
    Acc Chem Res; 2011 Dec; 44(12):1302-11. PubMed ID: 21899297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.