These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 21163641)
1. A screen-printed, amperometric biosensor array incorporated into a novel automated system for the simultaneous determination of organophosphate pesticides. Crew A; Lonsdale D; Byrd N; Pittson R; Hart JP Biosens Bioelectron; 2011 Feb; 26(6):2847-51. PubMed ID: 21163641 [TBL] [Abstract][Full Text] [Related]
2. A novel automated flow-based biosensor for the determination of organophosphate pesticides in milk. Mishra RK; Dominguez RB; Bhand S; Muñoz R; Marty JL Biosens Bioelectron; 2012 Feb; 32(1):56-61. PubMed ID: 22221795 [TBL] [Abstract][Full Text] [Related]
3. Acetylecholinesterase-based biosensor electrodes for organophosphate pesticide detection. II. Immobilization and stabilization of acetylecholinesterase. Vakurov A; Simpson CE; Daly CL; Gibson TD; Millner PA Biosens Bioelectron; 2005 May; 20(11):2324-9. PubMed ID: 15797334 [TBL] [Abstract][Full Text] [Related]
4. Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides. Law KA; Higson SP Biosens Bioelectron; 2005 Apr; 20(10):1914-24. PubMed ID: 15741058 [TBL] [Abstract][Full Text] [Related]
5. Biosensor based on self-assembling acetylcholinesterase on carbon nanotubes for flow injection/amperometric detection of organophosphate pesticides and nerve agents. Liu G; Lin Y Anal Chem; 2006 Feb; 78(3):835-43. PubMed ID: 16448058 [TBL] [Abstract][Full Text] [Related]
6. Detoxification of organophosphate residues using phosphotriesterase and their evaluation using flow based biosensor. Mishra RK; Istamboulie G; Bhand S; Marty JL Anal Chim Acta; 2012 Oct; 745():64-9. PubMed ID: 22938607 [TBL] [Abstract][Full Text] [Related]
7. Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors. Ganesana M; Istarnboulie G; Marty JL; Noguer T; Andreescu S Biosens Bioelectron; 2011 Dec; 30(1):43-8. PubMed ID: 21937214 [TBL] [Abstract][Full Text] [Related]
8. Analysis of phosphorothionate pesticides using a chloroperoxidase pretreatment and acetylcholinesterase biosensor detection. Roepcke CB; Muench SB; Schulze H; Bachmann TT; Schmid RD; Hauer B J Agric Food Chem; 2010 Aug; 58(15):8748-56. PubMed ID: 20614938 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of acetylcholineesterase-choline oxidase on a gold-platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Upadhyay S; Rao GR; Sharma MK; Bhattacharya BK; Rao VK; Vijayaraghavan R Biosens Bioelectron; 2009 Dec; 25(4):832-8. PubMed ID: 19762223 [TBL] [Abstract][Full Text] [Related]
10. Automated Water Analyser Computer Supported System (AWACSS) Part II: Intelligent, remote-controlled, cost-effective, on-line, water-monitoring measurement system. Tschmelak J; Proll G; Riedt J; Kaiser J; Kraemmer P; Bárzaga L; Wilkinson JS; Hua P; Hole JP; Nudd R; Jackson M; Abuknesha R; Barceló D; Rodriguez-Mozaz S; de Alda MJ; Sacher F; Stien J; Slobodník J; Oswald P; Kozmenko H; Korenková E; Tóthová L; Krascsenits Z; Gauglitz G Biosens Bioelectron; 2005 Feb; 20(8):1509-19. PubMed ID: 15626604 [TBL] [Abstract][Full Text] [Related]
11. Screen-printed bienzymatic sensor based on sol-gel immobilized Nippostrongylusbrasiliensis acetylcholinesterase and a cytochrome P450 BM-3 (CYP102-A1) mutant. Waibel M; Schulze H; Huber N; Bachmann TT Biosens Bioelectron; 2006 Jan; 21(7):1132-40. PubMed ID: 15893924 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical detection of carbamate pesticides in fruit and vegetables with a biosensor based on acetylcholinesterase immobilised on a composite of polyaniline-carbon nanotubes. Cesarino I; Moraes FC; Lanza MR; Machado SA Food Chem; 2012 Dec; 135(3):873-9. PubMed ID: 22953799 [TBL] [Abstract][Full Text] [Related]
14. Electrochemical biosensing of methyl parathion pesticide based on acetylcholinesterase immobilized onto Au-polypyrrole interlaced network-like nanocomposite. Gong J; Wang L; Zhang L Biosens Bioelectron; 2009 Mar; 24(7):2285-8. PubMed ID: 19111456 [TBL] [Abstract][Full Text] [Related]
15. Acetylcholinesterase biosensor design based on carbon nanotube-encapsulated polypyrrole and polyaniline copolymer for amperometric detection of organophosphates. Du D; Ye X; Cai J; Liu J; Zhang A Biosens Bioelectron; 2010 Jul; 25(11):2503-8. PubMed ID: 20472422 [TBL] [Abstract][Full Text] [Related]
16. Acetylcholinesterase biosensor based on Prussian blue-modified electrode for detecting organophosphorous pesticides. Sun X; Wang X Biosens Bioelectron; 2010 Aug; 25(12):2611-4. PubMed ID: 20466535 [TBL] [Abstract][Full Text] [Related]
17. Biosensor based on acetylcholinesterase immobilized onto layered double hydroxides for flow injection/amperometric detection of organophosphate pesticides. Gong J; Guan Z; Song D Biosens Bioelectron; 2013 Jan; 39(1):320-3. PubMed ID: 22868055 [TBL] [Abstract][Full Text] [Related]
19. Controlled immobilization of acetylcholinesterase on improved hydrophobic gold nanoparticle/Prussian blue modified surface for ultra-trace organophosphate pesticide detection. Wu S; Lan X; Zhao W; Li Y; Zhang L; Wang H; Han M; Tao S Biosens Bioelectron; 2011 Sep; 27(1):82-7. PubMed ID: 21752626 [TBL] [Abstract][Full Text] [Related]
20. Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Hossain SM; Luckham RE; McFadden MJ; Brennan JD Anal Chem; 2009 Nov; 81(21):9055-64. PubMed ID: 19788278 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]