These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 21163665)

  • 1. Application of XRF spectrometry to the study of pigments in glazed ceramic pots.
    Nuevo MJ; Martín Sánchez A
    Appl Radiat Isot; 2011 Mar; 69(3):574-9. PubMed ID: 21163665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cobalt pigments found in traditional Valencian ceramics by means of laser ablation-inductively coupled plasma mass spectrometry and portable X-ray fluorescence spectrometry.
    Pérez-Arantegui J; Resano M; García-Ruiz E; Vanhaecke F; Roldán C; Ferrero J; Coll J
    Talanta; 2008 Feb; 74(5):1271-80. PubMed ID: 18371780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portable apparatus for in situ x-ray diffraction and fluorescence analyses of artworks.
    Eveno M; Moignard B; Castaing J
    Microsc Microanal; 2011 Oct; 17(5):667-73. PubMed ID: 21615981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. μ-XRF analysis of glasses: a non-destructive utility for Cultural Heritage applications.
    Vaggelli G; Cossio R
    Analyst; 2012 Feb; 137(3):662-7. PubMed ID: 22163367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and optimisation of a portable micro-XRF method for in situ multi-element analysis of ancient ceramics.
    Papadopoulou DN; Zachariadis GA; Anthemidis AN; Tsirliganis NC; Stratis JA
    Talanta; 2006 Feb; 68(5):1692-9. PubMed ID: 18970516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methodology for processing backscattered electron images. Application to Aguada archaeological paints.
    Galván Josa V; Bertolino SR; Riveros JA; Castellano G
    Micron; 2009 Dec; 40(8):793-9. PubMed ID: 19651519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First use of portable system coupling X-ray diffraction and X-ray fluorescence for in-situ analysis of prehistoric rock art.
    Beck L; Rousselière H; Castaing J; Duran A; Lebon M; Moignard B; Plassard F
    Talanta; 2014 Nov; 129():459-64. PubMed ID: 25127619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X-ray fluorescence analysis of archaeological finds and art objects: recognizing gold and gilding.
    Trojek T; Hložek M
    Appl Radiat Isot; 2012 Jul; 70(7):1420-3. PubMed ID: 22484145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D micro-XRF for cultural heritage objects: new analysis strategies for the investigation of the Dead Sea Scrolls.
    Mantouvalou I; Wolff T; Hahn O; Rabin I; Lühl L; Pagels M; Malzer W; Kanngiesser B
    Anal Chem; 2011 Aug; 83(16):6308-15. PubMed ID: 21711051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis of films by X-ray fluorescence spectrometry].
    Han XY; Zhuo SJ; Wang PL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Jan; 26(1):159-65. PubMed ID: 16827370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts.
    Janssens K; Dik J; Cotte M; Susini J
    Acc Chem Res; 2010 Jun; 43(6):814-25. PubMed ID: 20462197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined non-destructive XRF and SR-XAS study of archaeological artefacts.
    Bardelli F; Barone G; Crupi V; Longo F; Majolino D; Mazzoleni P; Venuti V
    Anal Bioanal Chem; 2011 Mar; 399(9):3147-53. PubMed ID: 21311873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray fluorescence analyzers for investigating postmediaeval pottery from Southern Moravia.
    Trojek T; Hlozek M; Cechák T; Musílek L
    Appl Radiat Isot; 2010; 68(4-5):879-83. PubMed ID: 19914840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of X-ray Fluorescence Quantitative Methodologies To Analyze Aqueous and Acid Extracts from Building Materials Belonging to Cultural Heritage.
    García-Florentino C; Maguregui M; Marguí E; Queralt I; Carrero JA; Madariaga JM
    Anal Chem; 2017 Apr; 89(7):4246-4254. PubMed ID: 28281350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of inorganic pigments used in porcelain cards based on fusing Raman and X-ray fluorescence (XRF) data.
    Deneckere A; de Vries L; Vekemans B; Van de Voorde L; Ariese F; Vincze L; Moens L; Vandenabeele P
    Appl Spectrosc; 2011 Nov; 65(11):1281-90. PubMed ID: 22054088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. X-ray fluorescence in investigations of cultural relics and archaeological finds.
    Musílek L; Cechák T; Trojek T
    Appl Radiat Isot; 2012 Jul; 70(7):1193-202. PubMed ID: 22099447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synchrotron-based X-ray absorption spectroscopy for art conservation: looking back and looking forward.
    Cotte M; Susini J; Dik J; Janssens K
    Acc Chem Res; 2010 Jun; 43(6):705-14. PubMed ID: 20058906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ noninvasive study of artworks: the MOLAB multitechnique approach.
    Miliani C; Rosi F; Brunetti BG; Sgamellotti A
    Acc Chem Res; 2010 Jun; 43(6):728-38. PubMed ID: 20450184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A remote scanning Raman spectrometer for in situ measurements of works of art.
    Brambilla A; Osticioli I; Nevin A; Comelli D; D'Andrea C; Lofrumento C; Valentini G; Cubeddu R
    Rev Sci Instrum; 2011 Jun; 82(6):063109. PubMed ID: 21721676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bright light: microspectrofluorimetry for the characterization of lake pigments and dyes in works of art.
    Melo MJ; Claro A
    Acc Chem Res; 2010 Jun; 43(6):857-66. PubMed ID: 20446690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.