BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 21164002)

  • 1. Biochemistry. Catalyzing NO to N2O in the nitrogen cycle.
    Moënne-Loccoz P; Fee JA
    Science; 2010 Dec; 330(6011):1632-3. PubMed ID: 21164002
    [No Abstract]   [Full Text] [Related]  

  • 2. Structural basis of biological N2O generation by bacterial nitric oxide reductase.
    Hino T; Matsumoto Y; Nagano S; Sugimoto H; Fukumori Y; Murata T; Iwata S; Shiro Y
    Science; 2010 Dec; 330(6011):1666-70. PubMed ID: 21109633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial denitrifying nitric oxide reductases and aerobic respiratory terminal oxidases use similar delivery pathways for their molecular substrates.
    Mahinthichaichan P; Gennis RB; Tajkhorshid E
    Biochim Biophys Acta Bioenerg; 2018 Sep; 1859(9):712-724. PubMed ID: 29883591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2017 Nov; 1858(11):884-894. PubMed ID: 28801051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure and function of bacterial nitric oxide reductases: nitric oxide reductase, anaerobic enzymes.
    Shiro Y
    Biochim Biophys Acta; 2012 Oct; 1817(10):1907-13. PubMed ID: 22425814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for nitrous oxide generation by bacterial nitric oxide reductases.
    Shiro Y; Sugimoto H; Tosha T; Nagano S; Hino T
    Philos Trans R Soc Lond B Biol Sci; 2012 May; 367(1593):1195-203. PubMed ID: 22451105
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular structure and function of bacterial nitric oxide reductase.
    Hino T; Nagano S; Sugimoto H; Tosha T; Shiro Y
    Biochim Biophys Acta; 2012 Apr; 1817(4):680-7. PubMed ID: 22001779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can Reduction of NO to N
    Blomberg MR
    Biochemistry; 2017 Jan; 56(1):120-131. PubMed ID: 27959492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Structure of Dihydro-Heme d
    Klünemann T; Preuß A; Adamczack J; Rosa LFM; Harnisch F; Layer G; Blankenfeldt W
    J Mol Biol; 2019 Aug; 431(17):3246-3260. PubMed ID: 31173777
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitric oxide activation and reduction by heme-copper oxidoreductases and nitric oxide reductase.
    Pinakoulaki E; Varotsis C
    J Inorg Biochem; 2008; 102(5-6):1277-87. PubMed ID: 18334269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nitric oxide-binding heterodimeric cytochrome
    Akram M; Reimann J; Dietl A; Menzel A; Versantvoort W; Kartal B; Jetten MSM; Barends TRM
    J Biol Chem; 2019 Nov; 294(45):16712-16728. PubMed ID: 31548310
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases.
    Matsumura H; Chakraborty S; Reed J; Lu Y; Moënne-Loccoz P
    Biochemistry; 2016 Apr; 55(14):2091-9. PubMed ID: 27003474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why is the reduction of NO in cytochrome c dependent nitric oxide reductase (cNOR) not electrogenic?
    Blomberg MR; Siegbahn PE
    Biochim Biophys Acta; 2013 Jul; 1827(7):826-33. PubMed ID: 23618787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the Conserved Valine 236 in Access of Ligands to the Active Site of Thermus thermophilus ba
    Funatogawa C; Li Y; Chen Y; McDonald W; Szundi I; Fee JA; Stout CD; Einarsdóttir Ó
    Biochemistry; 2017 Jan; 56(1):107-119. PubMed ID: 28026953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-lived intermediate in N
    Nomura T; Kimura T; Kanematsu Y; Yamada D; Yamashita K; Hirata K; Ueno G; Murakami H; Hisano T; Yamagiwa R; Takeda H; Gopalasingam C; Kousaka R; Yanagisawa S; Shoji O; Kumasaka T; Yamamoto M; Takano Y; Sugimoto H; Tosha T; Kubo M; Shiro Y
    Proc Natl Acad Sci U S A; 2021 May; 118(21):. PubMed ID: 34001620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation of a cytochrome c-nitrous oxide reductase complex is obligatory for N2O reduction by Paracoccus pantotrophus.
    Rasmussen T; Brittain T; Berks BC; Watmough NJ; Thomson AJ
    Dalton Trans; 2005 Nov; (21):3501-6. PubMed ID: 16234931
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structures of nitric oxide reductases provide key insights into functional conversion of respiratory enzymes.
    Tosha T; Shiro Y
    IUBMB Life; 2013 Mar; 65(3):217-26. PubMed ID: 23378174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of inter-protein electron transfer for nitrite reduction in denitrification.
    Nojiri M; Koteishi H; Nakagami T; Kobayashi K; Inoue T; Yamaguchi K; Suzuki S
    Nature; 2009 Nov; 462(7269):117-20. PubMed ID: 19890332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform infrared characterization of a CuB-nitrosyl complex in cytochrome ba3 from Thermus thermophilus: relevance to NO reductase activity in heme-copper terminal oxidases.
    Hayashi T; Lin IJ; Chen Y; Fee JA; Moënne-Loccoz P
    J Am Chem Soc; 2007 Dec; 129(48):14952-8. PubMed ID: 17997553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase.
    Blomberg MRA; Ädelroth P
    Biochim Biophys Acta Bioenerg; 2018 Nov; 1859(11):1223-1234. PubMed ID: 30248312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.