BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 21164152)

  • 1. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans.
    West KE; Jablonski MR; Warfield B; Cecil KS; James M; Ayers MA; Maida J; Bowen C; Sliney DH; Rollag MD; Hanifin JP; Brainard GC
    J Appl Physiol (1985); 2011 Mar; 110(3):619-26. PubMed ID: 21164152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor.
    Brainard GC; Hanifin JP; Greeson JM; Byrne B; Glickman G; Gerner E; Rollag MD
    J Neurosci; 2001 Aug; 21(16):6405-12. PubMed ID: 11487664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting human nocturnal nonvisual responses to monochromatic and polychromatic light with a melanopsin photosensitivity function.
    Revell VL; Barrett DC; Schlangen LJ; Skene DJ
    Chronobiol Int; 2010 Oct; 27(9-10):1762-77. PubMed ID: 20969522
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance.
    Cajochen C; Frey S; Anders D; Späti J; Bues M; Pross A; Mager R; Wirz-Justice A; Stefani O
    J Appl Physiol (1985); 2011 May; 110(5):1432-8. PubMed ID: 21415172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency.
    Brainard GC; Hanifin JP; Warfield B; Stone MK; James ME; Ayers M; Kubey A; Byrne B; Rollag M
    J Pineal Res; 2015 Apr; 58(3):352-61. PubMed ID: 25726691
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue-hazard-free Candlelight OLED.
    Jou JH; Singh M; Su YT; Liu SH; He ZK
    J Vis Exp; 2017 Mar; (121):. PubMed ID: 28362390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian Potency Spectrum with Extended Exposure to Polychromatic White LED Light under Workplace Conditions.
    Moore-Ede M; Heitmann A; Guttkuhn R
    J Biol Rhythms; 2020 Aug; 35(4):405-415. PubMed ID: 32539484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preliminary evidence that both blue and red light can induce alertness at night.
    Figueiro MG; Bierman A; Plitnick B; Rea MS
    BMC Neurosci; 2009 Aug; 10():105. PubMed ID: 19712442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of light wavelength on suppression and phase delay of the melatonin rhythm.
    Wright HR; Lack LC
    Chronobiol Int; 2001 Sep; 18(5):801-8. PubMed ID: 11763987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of the human circadian system to short-wavelength (420-nm) light.
    Brainard GC; Sliney D; Hanifin JP; Glickman G; Byrne B; Greeson JM; Jasser S; Gerner E; Rollag MD
    J Biol Rhythms; 2008 Oct; 23(5):379-86. PubMed ID: 18838601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward optimizing lighting as a countermeasure to sleep and circadian disruption in space flight.
    Fucci RL; Gardner J; Hanifin JP; Jasser S; Byrne B; Gerner E; Rollag M; Brainard GC
    Acta Astronaut; 2005; 56(9-12):1017-24. PubMed ID: 15838948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectral Tuning of White Light Allows for Strong Reduction in Melatonin Suppression without Changing Illumination Level or Color Temperature.
    Souman JL; Borra T; de Goijer I; Schlangen LJM; Vlaskamp BNS; Lucassen MP
    J Biol Rhythms; 2018 Aug; 33(4):420-431. PubMed ID: 29984614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Melatonin suppression and sleepiness in children exposed to blue-enriched white LED lighting at night.
    Lee SI; Matsumori K; Nishimura K; Nishimura Y; Ikeda Y; Eto T; Higuchi S
    Physiol Rep; 2018 Dec; 6(24):e13942. PubMed ID: 30556352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alerting effects of short-wavelength (blue) and long-wavelength (red) lights in the afternoon.
    Sahin L; Figueiro MG
    Physiol Behav; 2013 May; 116-117():1-7. PubMed ID: 23535242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of a violet-excitation light-emitting diode on melatonin secretion and sleepiness: preliminary findings from a randomized controlled trial.
    Mitsui K; Saeki K; Sun M; Yamagami Y; Tai Y; Obayashi K
    J Clin Sleep Med; 2024 Jan; 20(1):101-109. PubMed ID: 37707296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin.
    Figueiro MG; Rea MS; Bullough JD
    Neurosci Lett; 2006 Oct; 406(3):293-7. PubMed ID: 16930839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers.
    van der Lely S; Frey S; Garbazza C; Wirz-Justice A; Jenni OG; Steiner R; Wolf S; Cajochen C; Bromundt V; Schmidt C
    J Adolesc Health; 2015 Jan; 56(1):113-9. PubMed ID: 25287985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.
    Rahman SA; St Hilaire MA; Lockley SW
    Physiol Behav; 2017 Aug; 177():221-229. PubMed ID: 28472667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light.
    Gooley JJ; Rajaratnam SM; Brainard GC; Kronauer RE; Czeisler CA; Lockley SW
    Sci Transl Med; 2010 May; 2(31):31ra33. PubMed ID: 20463367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral sensitivity of circadian phase resetting, melatonin suppression and acute alerting effects of intermittent light exposure.
    Rahman SA; Brainard GC; Czeisler CA; Lockley SW
    Biochem Pharmacol; 2021 Sep; 191():114504. PubMed ID: 33711285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.