These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 21164644)

  • 1. Low-loss plasmonic waveguide based on gain-assisted periodic metal nanosphere chains.
    Zhang H; Ho HP
    Opt Express; 2010 Oct; 18(22):23035-40. PubMed ID: 21164644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient light coupling between dielectric slot waveguide and plasmonic slot waveguide.
    Yang R; Wahsheh RA; Lu Z; Abushagur MA
    Opt Lett; 2010 Mar; 35(5):649-51. PubMed ID: 20195307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic waveguiding in a hexagonally ordered metal wire array.
    Zhang ZX; Hu ML; Chan KT; Wang CY
    Opt Lett; 2010 Dec; 35(23):3901-3. PubMed ID: 21124559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structurally-tolerant vertical directional coupling between metal-insulator-metal plasmonic waveguide and silicon dielectric waveguide.
    Li Q; Qiu M
    Opt Express; 2010 Jul; 18(15):15531-43. PubMed ID: 20720933
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic Sommerfeld resonances in nanorods at grazing incidences.
    Feng S; Halterman K; Overfelt PL; Bowling D
    Opt Express; 2009 Oct; 17(22):19823-41. PubMed ID: 19997204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active metal strip hybrid plasmonic waveguide with low critical material gain.
    Gao L; Tang L; Hu F; Guo R; Wang X; Zhou Z
    Opt Express; 2012 May; 20(10):11487-95. PubMed ID: 22565768
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement.
    Zhang J; Cai L; Bai W; Xu Y; Song G
    Opt Lett; 2011 Jun; 36(12):2312-4. PubMed ID: 21686004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes.
    Chen Y; Gregersen N; Nielsen TR; Mørk J; Lodahl P
    Opt Express; 2010 Jun; 18(12):12489-98. PubMed ID: 20588375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks.
    Kosiorek A; Kandulski W; Glaczynska H; Giersig M
    Small; 2005 Apr; 1(4):439-44. PubMed ID: 17193469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gain-assisted trapping of light in tapered plasmonic waveguide.
    Wang G; Lu H; Liu X
    Opt Lett; 2013 Feb; 38(4):558-60. PubMed ID: 23455135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric plasmonic-dielectric coupler with short coupling length, high extinction ratio, and low insertion loss.
    Li Q; Song Y; Zhou G; Su Y; Qiu M
    Opt Lett; 2010 Oct; 35(19):3153-5. PubMed ID: 20890317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid plasmonic waveguide for low-loss lightwave guiding.
    Kim JT; Ju JJ; Park S; Kim MS; Park SK; Shin SY
    Opt Express; 2010 Feb; 18(3):2808-13. PubMed ID: 20174109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the loss of plasmonic modes in planar metal-insulator-metal waveguides by a coupling-simulation approach.
    Lin CI; Gaylord TK
    Appl Opt; 2010 Feb; 49(6):936-44. PubMed ID: 20174161
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration.
    Kou Y; Ye F; Chen X
    Opt Express; 2011 Jun; 19(12):11746-52. PubMed ID: 21716406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solving dielectric and plasmonic waveguide dispersion relations on a pocket calculator.
    Kekatpure RD; Hryciw AC; Barnard ES; Brongersma ML
    Opt Express; 2009 Dec; 17(26):24112-29. PubMed ID: 20052123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical investigation of mode characteristics of nanoscale surface plasmon-polaritons using a pseudospectral scheme.
    Huang CC
    Opt Express; 2010 Nov; 18(23):23711-26. PubMed ID: 21164715
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and analysis of a surface plasmon polariton modulator using the electro-optic effect.
    Kumar A; Yu SF; Li X
    Appl Opt; 2009 Dec; 48(35):6600-5. PubMed ID: 20010999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical analysis of long-range surface plasmon polariton modes in nanoscale plasmonic waveguides.
    Krasavin AV; Zayats AV
    Opt Lett; 2010 Jul; 35(13):2118-20. PubMed ID: 20596165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Domino plasmons for subwavelength terahertz circuitry.
    Martin-Cano D; Nesterov ML; Fernandez-Dominguez AI; Garcia-Vidal FJ; Martin-Moreno L; Moreno E
    Opt Express; 2010 Jan; 18(2):754-64. PubMed ID: 20173896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.