These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 21164708)

  • 21. Plasmonic electromagnetically induced transparency in metallic nanoparticle-quantum dot hybrid systems.
    Hatef A; Sadeghi SM; Singh MR
    Nanotechnology; 2012 Feb; 23(6):065701. PubMed ID: 22248503
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Resonant surface plasmon-exciton interaction in hybrid MoSe2@Au nanostructures.
    Abid I; Bohloul A; Najmaei S; Avendano C; Liu HL; Péchou R; Mlayah A; Lou J
    Nanoscale; 2016 Apr; 8(15):8151-9. PubMed ID: 27029770
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanisms of Fano resonances in coupled plasmonic systems.
    Lovera A; Gallinet B; Nordlander P; Martin OJ
    ACS Nano; 2013 May; 7(5):4527-36. PubMed ID: 23614396
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A tunable optical Kerr switch based on a nanomechanical resonator coupled to a quantum dot.
    Li JJ; Zhu KD
    Nanotechnology; 2010 May; 21(20):205501. PubMed ID: 20413838
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Controlling quantum-dot light absorption and emission by a surface-plasmon field.
    Huang D; Easter M; Gumbs G; Maradudin AA; Lin SY; Cardimona DA; Zhang X
    Opt Express; 2014 Nov; 22(22):27576-605. PubMed ID: 25401904
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Active manipulation of plasmonic electromagnetically-induced transparency based on magnetic plasmon resonance.
    Lu Y; Rhee JY; Jang WH; Lee YP
    Opt Express; 2010 Sep; 18(20):20912-7. PubMed ID: 20940986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmon blockade in nanostructured graphene.
    Manjavacas A; Nordlander P; García de Abajo FJ
    ACS Nano; 2012 Feb; 6(2):1724-31. PubMed ID: 22224435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Plasmonic electromagnetically-induced transparency in symmetric structures.
    Jin X; Lu Y; Zheng H; Lee Y; Rhee JY; Jang WH
    Opt Express; 2010 Jun; 18(13):13396-401. PubMed ID: 20588469
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spontaneous decay of a single quantum dot coupled to a metallic slot waveguide in the presence of leaky plasmonic modes.
    Chen Y; Gregersen N; Nielsen TR; Mørk J; Lodahl P
    Opt Express; 2010 Jun; 18(12):12489-98. PubMed ID: 20588375
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonant driving of a single photon emitter embedded in a mechanical oscillator.
    Munsch M; Kuhlmann AV; Cadeddu D; Gérard JM; Claudon J; Poggio M; Warburton RJ
    Nat Commun; 2017 Jul; 8(1):76. PubMed ID: 28710414
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gain without inversion in hybrid quantum dot-metallic nanoparticle systems.
    Sadeghi SM
    Nanotechnology; 2010 Nov; 21(45):455401. PubMed ID: 20947944
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantum phase transition in a single-molecule quantum dot.
    Roch N; Florens S; Bouchiat V; Wernsdorfer W; Balestro F
    Nature; 2008 May; 453(7195):633-7. PubMed ID: 18509439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency.
    Dong ZG; Liu H; Xu MX; Li T; Wang SM; Cao JX; Zhu SN; Zhang X
    Opt Express; 2010 Oct; 18(21):22412-7. PubMed ID: 20941141
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong coupling of emitters to single plasmonic nanoparticles: exciton-induced transparency and Rabi splitting.
    Pelton M; Storm SD; Leng H
    Nanoscale; 2019 Aug; 11(31):14540-14552. PubMed ID: 31364684
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons.
    Leng H; Szychowski B; Daniel MC; Pelton M
    Nat Commun; 2018 Oct; 9(1):4012. PubMed ID: 30275446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct near-field optical imaging of plasmonic resonances in metal nanoparticle pairs.
    Lin HY; Huang CH; Chang CH; Lan YC; Chui HC
    Opt Express; 2010 Jan; 18(1):165-72. PubMed ID: 20173835
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fano Effect and Quantum Entanglement in Hybrid Semiconductor Quantum Dot-Metal Nanoparticle System.
    He Y; Zhu KD
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28632165
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Surface plasmon-quantum dot coupling from arrays of nanoholes.
    Brolo AG; Kwok SC; Cooper MD; Moffitt MG; Wang CW; Gordon R; Riordon J; Kavanagh KL
    J Phys Chem B; 2006 Apr; 110(16):8307-13. PubMed ID: 16623513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A molecular spectroscopic view of surface plasmon enhanced resonance Raman scattering.
    Kelley AM
    J Chem Phys; 2008 Jun; 128(22):224702. PubMed ID: 18554038
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.