These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 21164741)

  • 1. Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities.
    Lin H; Chen JH; Chao SS; Lo MC; Lin SD; Chang WH
    Opt Express; 2010 Nov; 18(23):23948-56. PubMed ID: 21164741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tuning the coupling between quantum dot and microdisk with photonic crystal nanobeam cavity.
    Zhao Y; Chen LH; Wang XH
    Opt Express; 2019 Jul; 27(15):20211-20220. PubMed ID: 31510119
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical properties of photonic molecules and elliptical pillars made of ZnSe-based microcavities.
    Sebald K; Seyfried M; Klembt S; Kruse C
    Opt Express; 2011 Sep; 19(20):19422-9. PubMed ID: 21996883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning quantum-dot based photonic devices with liquid crystals.
    Piegdon KA; Declair S; Förstner J; Meier T; Matthias H; Urbanski M; Kitzerow HS; Reuter D; Wieck AD; Lorke A; Meier C
    Opt Express; 2010 Apr; 18(8):7946-54. PubMed ID: 20588637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.
    Srinivasan K; Painter O
    Nature; 2007 Dec; 450(7171):862-5. PubMed ID: 18064009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavity-QED assisted attraction between a cavity mode and an exciton mode in a planar photonic-crystal cavity.
    Tawara T; Kamada H; Tanabe T; Sogawa T; Okamoto H; Yao P; Pathak PK; Hughes S
    Opt Express; 2010 Feb; 18(3):2719-28. PubMed ID: 20174101
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of mode coupling in a microdisk resonator for realizing directional emission.
    Yang YD; Wang SJ; Huang YZ
    Opt Express; 2009 Dec; 17(25):23010-5. PubMed ID: 20052227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electroluminescence from silicon-based photonic crystal microcavities with PbSe quantum dots.
    Heo J; Zhu T; Zhang C; Xu J; Bhattacharya P
    Opt Lett; 2010 Feb; 35(4):547-9. PubMed ID: 20160813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strong-coupling in inorganic-organic hybrid embedded single and coupled metallic microcavities.
    Pradeesh K; Prakash GV
    J Nanosci Nanotechnol; 2011 Dec; 11(12):10715-9. PubMed ID: 22408980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Waveguide-integrated microdisk light-emitting diode and photodetector based on Ge quantum dots.
    Xu X; Maruizumi T; Shiraki Y
    Opt Express; 2014 Feb; 22(4):3902-10. PubMed ID: 24663710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monolithic ZnTe-based pillar microcavities containing CdTe quantum dots.
    Kruse C; Pacuski W; Jakubczyk T; Kobak J; Gaj JA; Frank K; Schowalter M; Rosenauer A; Florian M; Jahnke F; Hommel D
    Nanotechnology; 2011 Jul; 22(28):285204. PubMed ID: 21654032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 4-quasi-phase-matched interactions in GaAs microdisk cavities.
    Kuo PS; Fang W; Solomon GS
    Opt Lett; 2009 Nov; 34(22):3580-2. PubMed ID: 19927217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epitaxial quantum dots in stretchable optical microcavities.
    Zander T; Herklotz A; Kiravittaya S; Benyoucef M; Ding F; Atkinson P; Kumar S; Plumhof JD; Dörr K; Rastelli A; Schmidt OG
    Opt Express; 2009 Dec; 17(25):22452-61. PubMed ID: 20052169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manipulating mode degeneracy for tunable spectral characteristics in multi-microcavity photonic molecules.
    Chen J; Hu G; Cao G; Deng Y; Zhou LM; Wen Z; Yang H; Li G; Chen X
    Opt Express; 2021 Mar; 29(7):11181-11193. PubMed ID: 33820236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced emission from a single quantum dot in a microdisk at a deterministic diabolical point.
    Yang J; Shi S; Xie X; Wu S; Xiao S; Song F; Dang J; Sun S; Yang L; Wang Y; Ge ZY; Li BB; Zuo Z; Jin K; Xu X
    Opt Express; 2021 May; 29(10):14231-14244. PubMed ID: 33985147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of resonant modes in thin microcavities by using electromagnetic theory.
    Wu JH; Liu AQ; Li HH
    Opt Lett; 2006 Aug; 31(16):2438-40. PubMed ID: 16880848
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical theory of a quantum emitter strongly coupled to Anderson-localized modes.
    Thyrrestrup H; Smolka S; Sapienza L; Lodahl P
    Phys Rev Lett; 2012 Mar; 108(11):113901. PubMed ID: 22540472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Planar defects in three-dimensional chalcogenide glass photonic crystals.
    Nicoletti E; Bulla D; Luther-Davies B; Gu M
    Opt Lett; 2011 Jun; 36(12):2248-50. PubMed ID: 21685982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.