These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 21164757)

  • 1. MEMS scanner enabled real-time depth sensitive hyperspectral imaging of biological tissue.
    Wang Y; Bish S; Tunnell JW; Zhang X
    Opt Express; 2010 Nov; 18(23):24101-8. PubMed ID: 21164757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-axis polydimethylsiloxane-based electromagnetic microelectromechanical system scanning mirror for optical coherence tomography.
    Kim S; Lee C; Kim JY; Kim J; Lim G; Kim C
    J Biomed Opt; 2016 Oct; 21(10):106001. PubMed ID: 27731491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical Characterization of Lorentz Force Based CMOS-MEMS Magnetic Field Sensor.
    Dennis JO; Ahmad F; Khir MH; Bin Hamid NH
    Sensors (Basel); 2015 Jul; 15(8):18256-69. PubMed ID: 26225972
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time Lissajous imaging with a low-voltage 2-axis MEMS scanner based on electrothermal actuation.
    Tanguy QAA; Gaiffe O; Passilly N; Cote JM; Cabodevila G; Bargiel S; Lutz P; Xie H; Gorecki C
    Opt Express; 2020 Mar; 28(6):8512-8527. PubMed ID: 32225475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Manufacture and characterization of high Q-factor inductors based on CMOS-MEMS techniques.
    Yang MZ; Dai CL; Hong JY
    Sensors (Basel); 2011; 11(10):9798-806. PubMed ID: 22163726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.
    Strathman M; Liu Y; Li X; Lin LY
    Opt Express; 2013 Oct; 21(20):23934-41. PubMed ID: 24104304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acoustic resolution photoacoustic microscopy based on microelectromechanical systems scanner.
    Moothanchery M; Dev K; Balasundaram G; Bi R; Olivo M
    J Biophotonics; 2020 Feb; 13(2):e201960127. PubMed ID: 31682313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed optical resolution photoacoustic microscopy with MEMS scanner using a novel and simple distortion correction method.
    Shintate R; Ishii T; Ahn J; Kim JY; Kim C; Saijo Y
    Sci Rep; 2022 Jun; 12(1):9221. PubMed ID: 35654947
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography.
    Kim KH; Park BH; Maguluri GN; Lee TW; Rogomentich FJ; Bancu MG; Bouma BE; de Boer JF; Bernstein JJ
    Opt Express; 2007 Dec; 15(26):18130-40. PubMed ID: 19551111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Handheld histology-equivalent sectioning laser-scanning confocal optical microscope for interventional imaging.
    Kumar K; Avritscher R; Wang Y; Lane N; Madoff DC; Yu TK; Uhr JW; Zhang X
    Biomed Microdevices; 2010 Apr; 12(2):223-33. PubMed ID: 20012209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Miniature fluorescence molecular tomography (FMT) endoscope based on a MEMS scanning mirror and an optical fiberscope.
    Yang H; Wang D; Shan T; Dai X; Xie H; Yang L; Jiang H
    Phys Med Biol; 2019 Jun; 64(12):125015. PubMed ID: 31117059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro insert: a prototype full-ring PET device for improving the image resolution of a small-animal PET scanner.
    Wu H; Pal D; Song TY; O'Sullivan JA; Tai YC
    J Nucl Med; 2008 Oct; 49(10):1668-76. PubMed ID: 18794253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Versatile Single-Element Ultrasound Imaging Platform using a Water-Proofed MEMS Scanner for Animals and Humans.
    Choi S; Kim JY; Lim HG; Baik JW; Kim HH; Kim C
    Sci Rep; 2020 Apr; 10(1):6544. PubMed ID: 32300153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEMS-based handheld confocal microscope for in-vivo skin imaging.
    Arrasmith CL; Dickensheets DL; Mahadevan-Jansen A
    Opt Express; 2010 Feb; 18(4):3805-19. PubMed ID: 20389391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and characterization of a 256 x 64-pixel single-photon imager in CMOS for a MEMS-based laser scanning time-of-flight sensor.
    Niclass C; Ito K; Soga M; Matsubara H; Aoyagi I; Kato S; Kagami M
    Opt Express; 2012 May; 20(11):11863-81. PubMed ID: 22714173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated monolithic 3D MEMS scanner for switchable real time vertical/horizontal cross-sectional imaging.
    Li H; Duan X; Qiu Z; Zhou Q; Kurabayashi K; Oldham KR; Wang TD
    Opt Express; 2016 Feb; 24(3):2145-55. PubMed ID: 26906790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measurement of normalized spectral responsivity of digital imaging devices by using a LED-based tunable uniform source.
    Mahmoud K; Park S; Park SN; Lee DH
    Appl Opt; 2013 Feb; 52(6):1263-71. PubMed ID: 23434998
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo 3D human vocal fold imaging with polarization sensitive optical coherence tomography and a MEMS scanning catheter.
    Kim KH; Burns JA; Bernstein JJ; Maguluri GN; Park BH; de Boer JF
    Opt Express; 2010 Jul; 18(14):14644-53. PubMed ID: 20639950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scanning MEMS Mirror for High Definition and High Frame Rate Lissajous Patterns.
    Seo YH; Hwang K; Kim H; Jeong KH
    Micromachines (Basel); 2019 Jan; 10(1):. PubMed ID: 30669314
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proof of principle study of the use of a CMOS active pixel sensor for proton radiography.
    Seco J; Depauw N
    Med Phys; 2011 Feb; 38(2):622-3. PubMed ID: 21452699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.