BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 21164775)

  • 1. Clinical implications of near-infrared fluorescence imaging in cancer.
    Kosaka N; Ogawa M; Choyke PL; Kobayashi H
    Future Oncol; 2009 Nov; 5(9):1501-11. PubMed ID: 19903075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A combined autofluorescence and diffuse reflectance spectroscopy for mucosa tissue diagnosis: Dual-distance system and data-driven decision.
    Liu D; Zheng J; Zhang Q; Zhang L; Gao F
    J Biophotonics; 2023 Oct; 16(10):e202300086. PubMed ID: 37368456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Near-Infrared Imaging of Colonic Adenomas In Vivo Using Orthotopic Human Organoids for Early Cancer Detection.
    Wu X; Chen CW; Jaiswal S; Chang TS; Zhang R; Dame MK; Duan Y; Jiang H; Spence JR; Hsieh SY; Wang TD
    Cancers (Basel); 2023 Sep; 15(19):. PubMed ID: 37835489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioimaging: Hot nanoparticles light up cancer.
    Weaver JB
    Nat Nanotechnol; 2010 Sep; 5(9):630-1. PubMed ID: 20818406
    [No Abstract]   [Full Text] [Related]  

  • 5. Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings.
    Huang H; Yu Y; Li X; Sun D; Zhang G; Li T; Shao X; Yang B
    Nanomaterials (Basel); 2023 Sep; 13(18):. PubMed ID: 37764541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nerve spectroscopy: understanding peripheral nerve autofluorescence through photodynamics.
    Dip F; Aleman R; Socolovsky M; Villalba N; Falco J; Menzo EL; White KP; Rosenthal RJ
    Surg Endosc; 2021 Dec; 35(12):7104-7111. PubMed ID: 33782757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanin distribution from the dermal-epidermal junction to the stratum corneum: non-invasive in vivo assessment by fluorescence and Raman microspectroscopy.
    Yakimov BP; Shirshin EA; Schleusener J; Allenova AS; Fadeev VV; Darvin ME
    Sci Rep; 2020 Sep; 10(1):14374. PubMed ID: 32873804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Oxidation-Induced Autofluorescence Hypothesis: Red Edge Excitation and Implications for Metabolic Imaging.
    Semenov AN; Yakimov BP; Rubekina AA; Gorin DA; Drachev VP; Zarubin MP; Velikanov AN; Lademann J; Fadeev VV; Priezzhev AV; Darvin ME; Shirshin EA
    Molecules; 2020 Apr; 25(8):. PubMed ID: 32316642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autofluorescence spectroscopy for nerve-sparing laser surgery of the head and neck-the influence of laser-tissue interaction.
    Stelzle F; Rohde M; Riemann M; Oetter N; Adler W; Tangermann-Gerk K; Schmidt M; Knipfer C
    Lasers Med Sci; 2017 Aug; 32(6):1289-1300. PubMed ID: 28551764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated Mueller-matrix near-infrared imaging and point-wise spectroscopy improves colonic cancer detection.
    Wang J; Zheng W; Lin K; Huang Z
    Biomed Opt Express; 2016 Apr; 7(4):1116-26. PubMed ID: 27446640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biophotonic endoscopy: a review of clinical research techniques for optical imaging and sensing of early gastrointestinal cancer.
    Coda S; Siersema PD; Stamp GW; Thillainayagam AV
    Endosc Int Open; 2015 Oct; 3(5):E380-92. PubMed ID: 26528489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical imaging for breast cancer prescreening.
    Godavarty A; Rodriguez S; Jung YJ; Gonzalez S
    Breast Cancer (Dove Med Press); 2015; 7():193-209. PubMed ID: 26229503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence lifetime spectroscopy of tissue autofluorescence in normal and diseased colon measured ex vivo using a fiber-optic probe.
    Coda S; Thompson AJ; Kennedy GT; Roche KL; Ayaru L; Bansi DS; Stamp GW; Thillainayagam AV; French PM; Dunsby C
    Biomed Opt Express; 2014 Feb; 5(2):515-38. PubMed ID: 24575345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue discrimination by uncorrected autofluorescence spectra: a proof-of-principle study for tissue-specific laser surgery.
    Stelzle F; Knipfer C; Adler W; Rohde M; Oetter N; Nkenke E; Schmidt M; Tangermann-Gerk K
    Sensors (Basel); 2013 Oct; 13(10):13717-31. PubMed ID: 24152930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Near-infrared molecular probes for in vivo imaging.
    Zhang X; Bloch S; Akers W; Achilefu S
    Curr Protoc Cytom; 2012 Apr; Chapter 12():Unit12.27. PubMed ID: 22470154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Polarized near-infrared autofluorescence imaging combined with near-infrared diffuse reflectance imaging for improving colonic cancer detection.
    Shao X; Zheng W; Huang Z
    Opt Express; 2010 Nov; 18(23):24293-300. PubMed ID: 21164775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining near-infrared-excited autofluorescence and Raman spectroscopy improves in vivo diagnosis of gastric cancer.
    Bergholt MS; Zheng W; Lin K; Ho KY; Teh M; Yeoh KG; So JB; Huang Z
    Biosens Bioelectron; 2011 Jun; 26(10):4104-10. PubMed ID: 21550225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared autofluorescence spectroscopy for in vivo identification of hyperplastic and adenomatous polyps in the colon.
    Shao X; Zheng W; Huang Z
    Biosens Bioelectron; 2011 Dec; 30(1):118-22. PubMed ID: 21959224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fundus near infrared fluorescence correlates with fundus near infrared reflectance.
    Weinberger AW; Lappas A; Kirschkamp T; Mazinani BA; Huth JK; Mohammadi B; Walter P
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3098-108. PubMed ID: 16799056
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.