These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 21164834)

  • 1. Photon arrival timing with sub-camera exposure time resolution in wide-field time-resolved photon counting imaging.
    Petrášek Z; Suhling K
    Opt Express; 2010 Nov; 18(24):24888-901. PubMed ID: 21164834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid wide-field photon counting imaging with microsecond time resolution.
    Suhling K; Sergent N; Levitt J; Green M
    Opt Express; 2010 Nov; 18(24):25292-8. PubMed ID: 21164877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast-gated intensified charge-coupled device camera to record time-resolved fluorescence spectra of tryptophan.
    Stortelder A; Buijs JB; Bulthuis J; Gooijer C; van der Zwan G
    Appl Spectrosc; 2004 Jun; 58(6):705-10. PubMed ID: 15198823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous measurement of the arrival times of x-ray photon sequence.
    Yan Q; Zhao B; Sheng L; Liu Y
    Rev Sci Instrum; 2011 May; 82(5):053105. PubMed ID: 21639490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multihit two-dimensional charged-particle imaging system with real-time image processing at 1000 frames/s.
    Horio T; Suzuki T
    Rev Sci Instrum; 2009 Jan; 80(1):013706. PubMed ID: 19191440
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photon counting imaging with an electron-bombarded CCD: towards a parallel-processing photoelectronic time-to-amplitude converter.
    Hirvonen LM; Jiggins S; Sergent N; Zanda G; Suhling K
    Rev Sci Instrum; 2014 Dec; 85(12):123102. PubMed ID: 25554267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coincidence ion imaging with a fast frame camera.
    Lee SK; Cudry F; Lin YF; Lingenfelter S; Winney AH; Fan L; Li W
    Rev Sci Instrum; 2014 Dec; 85(12):123303. PubMed ID: 25554285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scalable time-correlated photon counting system with multiple independent input channels.
    Wahl M; Rahn HJ; Röhlicke T; Kell G; Nettels D; Hillger F; Schuler B; Erdmann R
    Rev Sci Instrum; 2008 Dec; 79(12):123113. PubMed ID: 19123551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Indirectly illuminated X-ray area detector for X-ray photon correlation spectroscopy.
    Shinohara Y; Imai R; Kishimoto H; Yagi N; Amemiya Y
    J Synchrotron Radiat; 2010 Nov; 17(6):737-42. PubMed ID: 20975218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CCD-based X-ray area detector for time-resolved diffraction experiments.
    Yagi N; Inoue K; Oka T
    J Synchrotron Radiat; 2004 Nov; 11(Pt 6):456-61. PubMed ID: 15496732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of an ultrafast single photon counting imager for single molecule imaging.
    Ohnuki T; Michalet X; Tripathi A; Weiss S; Arisaka K
    Proc SPIE Int Soc Opt Eng; 2006 Feb; 6092():. PubMed ID: 29479131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-resolved fluorescence of the bacteriophage T4 capsid protein gp23.
    Stortelder A; Buijs JB; Bulthuis J; van der Vies SM; Gooijer C; van der Zwan G
    J Photochem Photobiol B; 2005 Jan; 78(1):53-60. PubMed ID: 15629249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide-field time-correlated single-photon counting (TCSPC) lifetime microscopy with microsecond time resolution.
    Hirvonen LM; Festy F; Suhling K
    Opt Lett; 2014 Oct; 39(19):5602-5. PubMed ID: 25360938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time-resolved long-lived luminescence imaging method employing luminescent lanthanide probes with a new microscopy system.
    Hanaoka K; Kikuchi K; Kobayashi S; Nagano T
    J Am Chem Soc; 2007 Nov; 129(44):13502-9. PubMed ID: 17927176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source.
    Schmidl G; Paa W; Triebel W; Schippel S; Heyer H
    Appl Opt; 2009 Dec; 48(35):6754-9. PubMed ID: 20011015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon lifetime imaging of fluorescent probes in intact blood vessels: a window to sub-cellular structural information and binding status.
    Douma K; Megens RT; Reitsma S; Prinzen L; Slaaf DW; Van Zandvoort MA
    Microsc Res Tech; 2007 May; 70(5):467-75. PubMed ID: 17393531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subpicosecond hard x-ray streak camera using single-photon counting.
    Enquist H; Navirian H; Nüske R; von Korff Schmising C; Jurgilaitis A; Herzog M; Bargheer M; Sondhauss P; Larsson J
    Opt Lett; 2010 Oct; 35(19):3219-21. PubMed ID: 20890339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photon-counting versus an integrating CCD-based gamma camera: important consequences for spatial resolution.
    Beekman FJ; de Vree GA
    Phys Med Biol; 2005 Jun; 50(12):N109-19. PubMed ID: 15930598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time fluorescence lifetime imaging system with a 32 x 32 0.13microm CMOS low dark-count single-photon avalanche diode array.
    Li DU; Arlt J; Richardson J; Walker R; Buts A; Stoppa D; Charbon E; Henderson R
    Opt Express; 2010 May; 18(10):10257-69. PubMed ID: 20588879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm.
    Scarcella C; Tosi A; Villa F; Tisa S; Zappa F
    Rev Sci Instrum; 2013 Dec; 84(12):123112. PubMed ID: 24387425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.