These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 21164909)

  • 21. Optically pumped semiconductor quantum dot disk laser operating at 1180 nm.
    Rautiainen J; Krestnikov I; Butkus M; Rafailov EU; Okhotnikov OG
    Opt Lett; 2010 Mar; 35(5):694-6. PubMed ID: 20195322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable high-power narrow-spectrum external-cavity diode laser at 675 nm as a pump source for UV generation.
    Chi M; Jensen OB; Erbert G; Sumpf B; Petersen PM
    Appl Opt; 2011 Jan; 50(1):90-4. PubMed ID: 21221165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. InP/AlGaInP quantum dot semiconductor disk lasers for CW TEM00 emission at 716 - 755 nm.
    Schlosser PJ; Hastie JE; Calvez S; Krysa AB; Dawson MD
    Opt Express; 2009 Nov; 17(24):21782-7. PubMed ID: 19997421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultrashort superradiant pulse generation from a GaN/InGaN heterostructure.
    Olle VF; Vasil'ev PP; Wonfor A; Penty RV; White IH
    Opt Express; 2012 Mar; 20(7):7035-9. PubMed ID: 22453383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 2.5 W orange power by frequency conversion from a dual-gain quantum-dot disk laser.
    Rautiainen J; Krestnikov I; Nikkinen J; Okhotnikov OG
    Opt Lett; 2010 Jun; 35(12):1935-7. PubMed ID: 20548344
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium.
    Eismann U; Bergschneider A; Sievers F; Kretzschmar N; Salomon C; Chevy F
    Opt Express; 2013 Apr; 21(7):9091-102. PubMed ID: 23571998
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication and characterization of Teflon-bonded periodic GaAs structures for THz generation.
    Trubnick SE; Tochitsky SY; Joshi C
    Opt Express; 2009 Feb; 17(4):2385-91. PubMed ID: 19219142
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure.
    Mittendorff M; Xu M; Dietz RJ; Künzel H; Sartorius B; Schneider H; Helm M; Winnerl S
    Nanotechnology; 2013 May; 24(21):214007. PubMed ID: 23619031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High-power flip-chip semiconductor disk laser in the 1.3 μm wavelength band.
    Rantamäki A; Sirbu A; Saarinen EJ; Lyytikäinen J; Mereuta A; Iakovlev V; Kapon E; Okhotnikov OG
    Opt Lett; 2014 Aug; 39(16):4855-8. PubMed ID: 25121892
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanolasers grown on silicon-based MOSFETs.
    Lu F; Tran TT; Ko WS; Ng KW; Chen R; Chang-Hasnain C
    Opt Express; 2012 May; 20(11):12171-6. PubMed ID: 22714204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-power temperature-stable GaInNAs distributed Bragg reflector laser emitting at 1180  nm.
    Korpijärvi VM; Viheriälä J; Koskinen M; Aho AT; Guina M
    Opt Lett; 2016 Feb; 41(4):657-60. PubMed ID: 26872156
    [TBL] [Abstract][Full Text] [Related]  

  • 32. GaAs-based surface-normal optical modulator compared to Si and its wavelength response characterization using a supercontinuum laser.
    Kulkarni OP; Islam MN; Terry FL
    Opt Express; 2011 Feb; 19(5):4076-84. PubMed ID: 21369236
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrically pumped 1.3 microm room-temperature InAs/GaAs quantum dot lasers on Si substrates by metal-mediated wafer bonding and layer transfer.
    Tanabe K; Guimard D; Bordel D; Iwamoto S; Arakawa Y
    Opt Express; 2010 May; 18(10):10604-8. PubMed ID: 20588912
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Few-cycle terahertz generation and spectroscopy of nanostructures.
    Darmo J; Müller T; Parz W; Kröll J; Strasser G; Unterrainer K
    Philos Trans A Math Phys Eng Sci; 2004 Feb; 362(1815):251-60; discussion 260-2. PubMed ID: 15306518
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Second harmonic generation in a low-loss orientation-patterned GaAs waveguide.
    Fedorova KA; McRobbie AD; Sokolovskii GS; Schunemann PG; Rafailov EU
    Opt Express; 2013 Jul; 21(14):16424-30. PubMed ID: 23938493
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A wavelength-versatile, continuous-wave, self-Raman solid-state laser operating in the visible.
    Lee AJ; Spence DJ; Piper JA; Pask HM
    Opt Express; 2010 Sep; 18(19):20013-8. PubMed ID: 20940892
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Narrow-line, cw orange light generation in a diode-pumped Nd:YVO4 laser using volume Bragg gratings.
    Chen YL; Chen WW; Du CE; Chang WK; Wang JL; Chung TY; Chen YH
    Opt Express; 2009 Dec; 17(25):22578-85. PubMed ID: 20052183
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High power single-frequency continuously-tunable compact extended-cavity semiconductor laser.
    Laurain A; Myara M; Beaudoin G; Sagnes I; Garnache A
    Opt Express; 2009 Jun; 17(12):9503-8. PubMed ID: 19506597
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gain-switched pulses from InGaAs ridge-quantum-well lasers limited by intrinsic dynamical gain suppression.
    Chen S; Yoshita M; Ito T; Mochizuki T; Akiyama H; Yokoyama H
    Opt Express; 2013 Mar; 21(6):7570-6. PubMed ID: 23546139
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 1.6 W continuous-wave Raman laser using low-loss synthetic diamond.
    Lubeigt W; Savitski VG; Bonner GM; Geoghegan SL; Friel I; Hastie JE; Dawson MD; Burns D; Kemp AJ
    Opt Express; 2011 Mar; 19(7):6938-44. PubMed ID: 21451719
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.