These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 21164914)

  • 1. Intermodulation and harmonic distortion in slow light Microwave Photonic phase shifters based on Coherent Population Oscillations in SOAs.
    Gasulla I; Sancho J; Capmany J; Lloret J; Sales S
    Opt Express; 2010 Dec; 18(25):25677-92. PubMed ID: 21164914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical study of the spurious-free dynamic range of a tunable delay line based on slow light in SOA.
    Berger P; Bourderionnet J; Alouini M; Bretenaker F; Dolfi D
    Opt Express; 2009 Oct; 17(22):20584-97. PubMed ID: 19997287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analytical model and figures of merit for filtered Microwave Photonic Links.
    Gasulla I; Capmany J
    Opt Express; 2011 Sep; 19(20):19758-74. PubMed ID: 21996918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers.
    Xue W; Sales S; Capmany J; Mørk J
    Opt Express; 2010 Mar; 18(6):6156-63. PubMed ID: 20389638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic saturation in Semiconductor Optical Amplifiers: accurate model, role of carrier density, and slow light.
    Berger P; Alouini M; Bourderionnet J; Bretenaker F; Dolfi D
    Opt Express; 2010 Jan; 18(2):685-93. PubMed ID: 20173888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the correct modeling of semiconductor optical amplifier RIN and phase noise for optical phase shift keyed communication systems.
    Janer CL; Connelly MJ
    Opt Express; 2010 Dec; 18(26):27455-67. PubMed ID: 21197021
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intermodulation distortion in microwave phase shifters based on slow and fast light propagation in semiconductor optical amplifiers.
    Berger P; Bourderionnet J; Bretenaker F; Dolfi D; Dúill SO; Eisenstein G; Alouini M
    Opt Lett; 2010 Aug; 35(16):2762-4. PubMed ID: 20717449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong tunable slow and fast lights using a gain-clamped semiconductor optical amplifier.
    Moon SH; Park J; Oh JM; Kim NJ; Lee D; Chang SW; Nielsen D; Chuang SL
    Opt Express; 2009 Nov; 17(23):21222-7. PubMed ID: 19997361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Linear phase-and-frequency-modulated photonic links using optical discriminators.
    Wyrwas JM; Peach R; Meredith S; Middleton C; Rasras MS; Tu KY; Earnshaw MP; Pardo F; Cappuzzo MA; Chen EY; Gomez LT; Klemens F; Keller R; Bolle C; Zhang L; Buhl L; Wu MC; Chen YK; DeSalvo R
    Opt Express; 2012 Nov; 20(24):26292-8. PubMed ID: 23187483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical investigations of quantum-dot semiconductor optical amplifier enabled intensity modulation of adaptively modulated optical OFDM signals in IMDD PON systems.
    Hamié A; Hamze M; Wei JL; Sharaiha A; Tang JM
    Opt Express; 2011 Dec; 19(25):25696-711. PubMed ID: 22273962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single passband microwave photonic filter using continuous-time impulse response.
    Huang TX; Yi X; Minasian RA
    Opt Express; 2011 Mar; 19(7):6231-42. PubMed ID: 21451648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear dispersion-based incoherent photonic processing for microwave pulse generation with full reconfigurability.
    Bolea M; Mora J; Ortega B; Capmany J
    Opt Express; 2012 Mar; 20(6):6728-36. PubMed ID: 22418557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relaxation oscillation suppression in continuous-wave intracavity optical parametric oscillators.
    Stothard DJ; Dunn MH
    Opt Express; 2010 Jan; 18(2):1336-48. PubMed ID: 20173961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical amplitude modulation extinction by a deep saturated ultra-long semiconductor optical amplifier.
    Ribeiro NS; Cavacalcante AL; Gallep CM; Conforti E
    Opt Express; 2010 Dec; 18(26):27298-305. PubMed ID: 21197008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A high performance photonic pulse processing device.
    Rosenbluth D; Kravtsov K; Fok MP; Prucnal PR
    Opt Express; 2009 Dec; 17(25):22767-72. PubMed ID: 20052202
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method to improve the noise figure and saturation power in multi-contact semiconductor optical amplifiers: simulation and experiment.
    Carney K; Lennox R; Maldonado-Basilio R; Philippe S; Surre F; Bradley L; Landais P
    Opt Express; 2013 Mar; 21(6):7180-95. PubMed ID: 23546102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An upstream reach-extender for 10Gb/s PON applications based on an optimized semiconductor amplifier cascade.
    Porto S; Antony C; Ossieur P; Townsend PD
    Opt Express; 2012 Jan; 20(1):186-91. PubMed ID: 22274342
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Figures of merit for microwave photonic phase shifters based on semiconductor optical amplifiers.
    Sancho J; Lloret J; Gasulla I; Sales S; Capmany J
    Opt Express; 2012 May; 20(10):10519-25. PubMed ID: 22565677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detailed investigation of self-imaging in large-core multimode optical fibers for application in fiber lasers and amplifiers.
    Zhu X; Schülzgen A; Li H; Li L; Han L; Moloney JV; Peyghambarian N
    Opt Express; 2008 Oct; 16(21):16632-45. PubMed ID: 18852772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast gain recovery rates with strong wavelength dependence in a non-linear SOA.
    Cleary CS; Power MJ; Schneider S; Webb RP; Manning RJ
    Opt Express; 2010 Dec; 18(25):25726-37. PubMed ID: 21164918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.