These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 21164948)

  • 1. Tightly focused femtosecond laser pulse in air: from filamentation to breakdown.
    Liu XL; Lu X; Liu X; Xi TT; Liu F; Ma JL; Zhang J
    Opt Express; 2010 Dec; 18(25):26007-17. PubMed ID: 21164948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elongation of femtosecond filament by molecular alignment in air.
    Cai H; Wu J; Li H; Bai X; Zeng H
    Opt Express; 2009 Nov; 17(23):21060-5. PubMed ID: 19997344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focusing of a femtosecond vortex light pulse through a high numerical aperture objective.
    Chen B; Pu J; Korotkova O
    Opt Express; 2010 May; 18(10):10822-7. PubMed ID: 20588936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics of micro air plasma produced by double femtosecond laser pulses.
    Zhang N; Wu Z; Xu K; Zhu X
    Opt Express; 2012 Jan; 20(3):2528-38. PubMed ID: 22330490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of few-cycle pulse generation: spatial size, mode quality and focal volume effects in filamentation based pulse compression.
    Roberts A; Shivaram N; Xu L; Sandhu A
    Opt Express; 2009 Dec; 17(26):23894-902. PubMed ID: 20052100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observations in collinear femtosecond-nanosecond dual-pulse laser-induced breakdown spectroscopy.
    Scaffidi J; Pearman W; Carter JC; Angel SM
    Appl Spectrosc; 2006 Jan; 60(1):65-71. PubMed ID: 16454914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Active compensation of large dispersion of femtosecond pulses for precision laser ranging.
    Lee SH; Lee J; Kim YJ; Lee K; Kim SW
    Opt Express; 2011 Feb; 19(5):4002-8. PubMed ID: 21369227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oval-like hollow intensity distribution of tightly focused femtosecond laser pulses in air.
    Li YT; Xi TT; Hao ZQ; Zhang Z; Peng XY; Li K; Jin Z; Zheng ZY; Yu QZ; Lu X; Zhang J
    Opt Express; 2007 Dec; 15(26):17973-9. PubMed ID: 19551094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear spectrum broadening of femtosecond laser pulses in photorefractive waveguide arrays.
    Wang Z; Wu Q; Yang C; Zhang X; Chen Z; Rupp RA; Xu J
    Opt Express; 2010 May; 18(10):10112-9. PubMed ID: 20588865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time-resolved interferometry of femtosecond-laser-induced processes under tight focusing and close-to-optical breakdown inside borosilicate glass.
    Hayasaki Y; Isaka M; Takita A; Juodkazis S
    Opt Express; 2011 Mar; 19(7):5725-34. PubMed ID: 21451597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Penetration and precision of subsurface photodisruption in porcine skin tissue with infrared femtosecond laser pulses.
    Tse C; Zohdy MJ; Ye JY; O'Donnell M
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1211-8. PubMed ID: 18334415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulse duration dependent nonlinear propagation of a focused femtosecond laser pulse in fused silica.
    Sun Q; Asahi H; Nishijima Y; Murazawa N; Ueno K; Misawa H
    Opt Express; 2010 Nov; 18(24):24495-503. PubMed ID: 21164796
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-range optical air data measurements for aircraft control using rotational Raman backscatter.
    Fraczek M; Behrendt A; Schmitt N
    Opt Express; 2013 Jul; 21(14):16398-414. PubMed ID: 23938491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical and experimental investigation of dissipative solitons in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity.
    Liu X
    Opt Express; 2009 Dec; 17(25):22401-16. PubMed ID: 20052164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Materials processing with a tightly focused femtosecond laser vortex pulse.
    Hnatovsky C; Shvedov VG; Krolikowski W; Rode AV
    Opt Lett; 2010 Oct; 35(20):3417-9. PubMed ID: 20967085
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffraction characteristics of spatial and temporal Gaussian-shaped femtosecond laser pulse by rectangle reflection grating.
    Liu G; Xu R; Yu W; Wu H
    Appl Opt; 2011 Feb; 50(6):859-65. PubMed ID: 21343965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple method of measuring laser peak intensity inside femtosecond laser filament in air.
    Xu S; Sun X; Zeng B; Chu W; Zhao J; Liu W; Cheng Y; Xu Z; Chin SL
    Opt Express; 2012 Jan; 20(1):299-307. PubMed ID: 22274353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spot size characterization of focused non-Gaussian X-ray laser beams.
    Chalupský J; Krzywinski J; Juha L; Hájková V; Cihelka J; Burian T; Vysín L; Gaudin J; Gleeson A; Jurek M; Khorsand AR; Klinger D; Wabnitz H; Sobierajski R; Störmer M; Tiedtke K; Toleikis S
    Opt Express; 2010 Dec; 18(26):27836-45. PubMed ID: 21197057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy and spectral enhancement of femtosecond supercontinuum in a noble gas using a weak seed.
    Ensley TR; Fishman DA; Webster S; Padilha LA; Hagan DJ; Van Stryland EW
    Opt Express; 2011 Jan; 19(2):757-63. PubMed ID: 21263616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous laser-induced group velocity dispersion in fused silica.
    Rasskazov G; Ryabtsev A; Pestov D; Nie B; Lozovoy VV; Dantus M
    Opt Express; 2013 Jul; 21(15):17695-700. PubMed ID: 23938642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.