These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21165087)

  • 1. Lower bound of energy dissipation in optical excitation transfer via optical near-field interactions.
    Naruse M; Hori H; Kobayashi K; Holmström P; Thylén L; Ohtsu M
    Opt Express; 2010 Nov; 18 Suppl 4():A544-53. PubMed ID: 21165087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temperature dependence of optical near-field energy transfer rate between two quantum dots in nanophotonic devices.
    Karimkhani A; Moravvej-Farshi MK
    Appl Opt; 2010 Feb; 49(6):1012-9. PubMed ID: 20174170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent properties of a two-level system based on a quantum-dot photodiode.
    Zrenner A; Beham E; Stufler S; Findeis F; Bichler M; Abstreiter G
    Nature; 2002 Aug; 418(6898):612-4. PubMed ID: 12167853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Excitation dynamics in a three-quantum dot system driven by optical near-field interaction: towards a nanometric photonic device.
    Kobayashi K; Sangu S; Shojiguchi A; Kawazoe T; Kitahara K; Ohtsu M
    J Microsc; 2003 Jun; 210(Pt 3):247-51. PubMed ID: 12787093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent optical spectroscopy of a strongly driven quantum dot.
    Xu X; Sun B; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Science; 2007 Aug; 317(5840):929-32. PubMed ID: 17702938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tamper resistance in optical excitation transfer based on optical near-field interactions.
    Naruse M; Hori H; Kobayashi K; Ohtsu M
    Opt Lett; 2007 Jun; 32(12):1761-3. PubMed ID: 17572772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically programmable electron spin memory using semiconductor quantum dots.
    Kroutvar M; Ducommun Y; Heiss D; Bichler M; Schuh D; Abstreiter G; Finley JJ
    Nature; 2004 Nov; 432(7013):81-4. PubMed ID: 15525984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creating self-illuminating quantum dot conjugates.
    So MK; Loening AM; Gambhir SS; Rao J
    Nat Protoc; 2006; 1(3):1160-4. PubMed ID: 17406398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly efficient nonradiative energy transfer mediated light harvesting in water using aqueous CdTe quantum dot antennas.
    Mutlugun E; Samarskaya O; Ozel T; Cicek N; Gaponik N; Eychmüller A; Demir HV
    Opt Express; 2010 May; 18(10):10720-30. PubMed ID: 20588924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of modulatable optical near-field interactions between dispersed resonant quantum dots.
    Tate N; Naruse M; Nomura W; Kawazoe T; Yatsui T; Hoga M; Ohyagi Y; Sekine Y; Fujita H; Ohtsu M
    Opt Express; 2011 Sep; 19(19):18260-71. PubMed ID: 21935193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonadiabatic photodissociation process using an optical near field.
    Kawazoe T; Kobayashi K; Takubo S; Ohtsu M
    J Chem Phys; 2005 Jan; 122(2):024715. PubMed ID: 15638622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy.
    Samia AC; Dayal S; Burda C
    Photochem Photobiol; 2006; 82(3):617-25. PubMed ID: 16475871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation energy transfer between closely spaced multichromophoric systems: effects of band mixing and intraband relaxation.
    Didraga C; Malyshev VA; Knoester J
    J Phys Chem B; 2006 Sep; 110(38):18818-27. PubMed ID: 16986872
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical energy transport and interactions between the excitations in a coumarin-perylene bisimide dendrimer.
    Augulis R; Pugzlys A; Hurenkamp JH; Feringa BL; van Esch JH; van Loosdrecht PH
    J Phys Chem A; 2007 Dec; 111(50):12944-53. PubMed ID: 18044854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-field coherent spectroscopy and microscopy of a quantum dot system.
    Guest JR; Stievater TH; Chen G; Tabak EA; Orr BG; Steel DG; Gammon D; Katzer DS
    Science; 2001 Sep; 293(5538):2224-7. PubMed ID: 11567131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Study on energy transfer in argon/air in dielectric barrier discharge by optical emission spectra].
    Dong LF; Qi YY; Zhao ZC; Li YH; Li XC
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Nov; 28(11):2491-3. PubMed ID: 19271473
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Saturated near-resonant refractive optical nonlinearity in CdTe quantum dots.
    Dancus I; Vlad VI; Petris A; Gaponik N; Lesnyak V; Eychmüller A
    Opt Lett; 2010 Apr; 35(7):1079-81. PubMed ID: 20364223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-illuminating quantum dot conjugates for in vivo imaging.
    So MK; Xu C; Loening AM; Gambhir SS; Rao J
    Nat Biotechnol; 2006 Mar; 24(3):339-43. PubMed ID: 16501578
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.