These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21165095)

  • 1. Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics.
    Bai W; Gan Q; Song G; Chen L; Kafafi Z; Bartoli F
    Opt Express; 2010 Nov; 18 Suppl 4():A620-30. PubMed ID: 21165095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell.
    Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X
    Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical design of organic solar cell with hybrid plasmonic system.
    Sha WE; Choy WC; Chen YP; Chew WC
    Opt Express; 2011 Aug; 19(17):15908-18. PubMed ID: 21934954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Broadband absorption enhancement in a-Si:H thin-film solar cells sandwiched by pyramidal nanostructured arrays.
    Li C; Xia L; Gao H; Shi R; Sun C; Shi H; Du C
    Opt Express; 2012 Sep; 20 Suppl 5():A589-96. PubMed ID: 23037526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model.
    Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q
    Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A generalized "cut and projection" algorithm for the generation of quasiperiodic plasmonic concentrators for high efficiency ultra-thin film photovoltaics.
    Flanigan PW; Ostfeld AE; Serrino NG; Ye Z; Pacifici D
    Opt Express; 2013 Feb; 21(3):2757-76. PubMed ID: 23481733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays.
    Cheng CW; Abbas MN; Chiu CW; Lai KT; Shih MH; Chang YC
    Opt Express; 2012 Apr; 20(9):10376-81. PubMed ID: 22535127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin layer sensing based on hybrid coupler with short-range surface plasmon polariton and dielectric waveguide.
    Wan R; Liu F; Huang Y
    Opt Lett; 2010 Jan; 35(2):244-6. PubMed ID: 20081982
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband light absorption with multiple surface plasmon polariton waves excited at the interface of a metallic grating and photonic crystal.
    Hall AS; Faryad M; Barber GD; Liu L; Erten S; Mayer TS; Lakhtakia A; Mallouk TE
    ACS Nano; 2013 Jun; 7(6):4995-5007. PubMed ID: 23730702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing solar cells with localized plasmons in nanovoids.
    Lal NN; Soares BF; Sinha JK; Huang F; Mahajan S; Bartlett PN; Greenham NC; Baumberg JJ
    Opt Express; 2011 Jun; 19(12):11256-63. PubMed ID: 21716355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells.
    Kim I; Lee TS; Jeong DS; Lee WS; Kim WM; Lee KS
    Opt Express; 2013 Jul; 21 Suppl 4():A669-76. PubMed ID: 24104493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full-band absorption enhancement in ultrathin-film solar cells through the excitation of multiresonant guided modes.
    Shi L; Zhou Z; Tang B
    Appl Opt; 2012 May; 51(13):2436-40. PubMed ID: 22614423
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Broadband absorption and efficiency enhancement of an ultra-thin silicon solar cell with a plasmonic fractal.
    Zhu LH; Shao MR; Peng RW; Fan RH; Huang XR; Wang M
    Opt Express; 2013 May; 21 Suppl 3():A313-23. PubMed ID: 24104419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Investigation on performance enhancement of bulk heterojunction organic solar cells].
    Su MC; Yi LX; Wang Y; Shi YM; Liang CJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Apr; 28(4):740-4. PubMed ID: 18619287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating.
    Dai L; Jiang C
    Opt Express; 2009 Oct; 17(22):20502-14. PubMed ID: 19997279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergistic Effects of Localized Surface Plasmon Resonance, Surface Plasmon Polariton, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhance Organic Solar Cell Efficiency.
    Ibrahim Zamkoye I; Lucas B; Vedraine S
    Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells.
    Bai W; Gan Q; Bartoli F; Zhang J; Cai L; Huang Y; Song G
    Opt Lett; 2009 Dec; 34(23):3725-7. PubMed ID: 19953175
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resource efficient plasmon-based 2D-photovoltaics with reflective support.
    Hägglund C; Apell SP
    Opt Express; 2010 Sep; 18 Suppl 3():A343-56. PubMed ID: 21165065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding of photocurrent enhancement in real thin film solar cells: towards optimal one-dimensional gratings.
    Naqavi A; Söderström K; Haug FJ; Paeder V; Scharf T; Herzig HP; Ballif C
    Opt Express; 2011 Jan; 19(1):128-40. PubMed ID: 21263549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional long-range plasmonic-photonic structures.
    Mu W; Buchholz DB; Sukharev M; Jang JI; Chang RP; Ketterson JB
    Opt Lett; 2010 Feb; 35(4):550-2. PubMed ID: 20160814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.