These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 2116531)
1. Compositional statistics: an improvement of evolutionary parsimony and its application to deep branches in the tree of life. Sidow A; Wilson AC J Mol Evol; 1990 Jul; 31(1):51-68. PubMed ID: 2116531 [TBL] [Abstract][Full Text] [Related]
2. The phylogenetic relations of DNA-dependent RNA polymerases of archaebacteria, eukaryotes, and eubacteria. Zillig W; Klenk HP; Palm P; Pühler G; Gropp F; Garrett RA; Leffers H Can J Microbiol; 1989 Jan; 35(1):73-80. PubMed ID: 2541879 [TBL] [Abstract][Full Text] [Related]
3. Evolution of RNA polymerases and branching patterns of the three major groups of Archaebacteria. Iwabe N; Kuma K; Kishino H; Hasegawa M; Miyata T J Mol Evol; 1991 Jan; 32(1):70-8. PubMed ID: 1901370 [TBL] [Abstract][Full Text] [Related]
4. DNA-dependent RNA polymerase subunit B as a tool for phylogenetic reconstructions: branching topology of the archaeal domain. Klenk HP; Zillig W J Mol Evol; 1994 Apr; 38(4):420-32. PubMed ID: 8007009 [TBL] [Abstract][Full Text] [Related]
5. Archaebacterial DNA-dependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Pühler G; Leffers H; Gropp F; Palm P; Klenk HP; Lottspeich F; Garrett RA; Zillig W Proc Natl Acad Sci U S A; 1989 Jun; 86(12):4569-73. PubMed ID: 2499884 [TBL] [Abstract][Full Text] [Related]
6. Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. Achenbach-Richter L; Gupta R; Zillig W; Woese CR Syst Appl Microbiol; 1988; 10():231-40. PubMed ID: 11542150 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary analysis of the plastid-encoded gene for the alpha subunit of the DNA-dependent RNA polymerase of Pyrenomonas salina (Cryptophyceae). Maerz M; Rensing S; Igloi GL; Maier UG Curr Genet; 1992 Dec; 22(6):479-82. PubMed ID: 1473179 [TBL] [Abstract][Full Text] [Related]
8. Accounting for evolutionary rate variation among sequence sites consistently changes universal phylogenies deduced from rRNA and protein-coding genes. Tourasse NJ; Gouy M Mol Phylogenet Evol; 1999 Oct; 13(1):159-68. PubMed ID: 10508549 [TBL] [Abstract][Full Text] [Related]
9. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Gouy M; Li WH Nature; 1989 May; 339(6220):145-7. PubMed ID: 2497353 [TBL] [Abstract][Full Text] [Related]
10. Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain. Cammarano P; Palm P; Creti R; Ceccarelli E; Sanangelantoni AM; Tiboni O J Mol Evol; 1992 May; 34(5):396-405. PubMed ID: 1602493 [TBL] [Abstract][Full Text] [Related]
11. Global similarities in nucleotide base composition among disparate functional classes of single-stranded RNA imply adaptive evolutionary convergence. Schultes E; Hraber PT; LaBean TH RNA; 1997 Jul; 3(7):792-806. PubMed ID: 9214661 [TBL] [Abstract][Full Text] [Related]
12. Evolutionary distances between nucleotide sequences based on the distribution of substitution rates among sites as estimated by parsimony. Tourasse NJ; Gouy M Mol Biol Evol; 1997 Mar; 14(3):287-98. PubMed ID: 9066796 [TBL] [Abstract][Full Text] [Related]
13. Pattern analysis of 5S rRNA. Eigen M; Lindemann B; Winkler-Oswatitsch R; Clarke CH Proc Natl Acad Sci U S A; 1985 Apr; 82(8):2437-41. PubMed ID: 3921961 [TBL] [Abstract][Full Text] [Related]
14. Phylogenetic analysis of 70 kD heat shock protein sequences suggests a chimeric origin for the eukaryotic cell nucleus. Gupta RS; Singh B Curr Biol; 1994 Dec; 4(12):1104-14. PubMed ID: 7704574 [TBL] [Abstract][Full Text] [Related]
15. Evolution of the RNA polymerase B' subunit gene (rpoB') in Halobacteriales: a complementary molecular marker to the SSU rRNA gene. Walsh DA; Bapteste E; Kamekura M; Doolittle WF Mol Biol Evol; 2004 Dec; 21(12):2340-51. PubMed ID: 15356285 [TBL] [Abstract][Full Text] [Related]
16. Sequence, organization, transcription and evolution of RNA polymerase subunit genes from the archaebacterial extreme halophiles Halobacterium halobium and Halococcus morrhuae. Leffers H; Gropp F; Lottspeich F; Zillig W; Garrett RA J Mol Biol; 1989 Mar; 206(1):1-17. PubMed ID: 2495365 [TBL] [Abstract][Full Text] [Related]
17. Unusually high evolutionary rate of the elongation factor 1 alpha genes from the Ciliophora and its impact on the phylogeny of eukaryotes. Moreira D; Le Guyader H; Philippe H Mol Biol Evol; 1999 Feb; 16(2):234-45. PubMed ID: 10028290 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary relationships amongst archaebacteria. A comparative study of 23 S ribosomal RNAs of a sulphur-dependent extreme thermophile, an extreme halophile and a thermophilic methanogen. Leffers H; Kjems J; Ostergaard L; Larsen N; Garrett RA J Mol Biol; 1987 May; 195(1):43-61. PubMed ID: 3116261 [TBL] [Abstract][Full Text] [Related]
19. New Statistical Criteria Detect Phylogenetic Bias Caused by Compositional Heterogeneity. Duchêne DA; Duchêne S; Ho SYW Mol Biol Evol; 2017 Jun; 34(6):1529-1534. PubMed ID: 28333201 [TBL] [Abstract][Full Text] [Related]
20. A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Lake JA Mol Biol Evol; 1987 Mar; 4(2):167-91. PubMed ID: 3447007 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]