These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 2116531)
41. The effectiveness of mitochondrial rRNA gene sequences for the reconstruction of the phylogeny of an insect order (Orthoptera). Flook PK; Rowell CH Mol Phylogenet Evol; 1997 Oct; 8(2):177-92. PubMed ID: 9299223 [TBL] [Abstract][Full Text] [Related]
42. Evolution of large subunit rRNA structure. The 3' terminal domain contains elements of secondary structure specific to major phylogenetic groups. Bachellerie JP; Michot B Biochimie; 1989 Jun; 71(6):701-9. PubMed ID: 2502186 [TBL] [Abstract][Full Text] [Related]
43. Bayesian coestimation of phylogeny and sequence alignment. Lunter G; Miklós I; Drummond A; Jensen JL; Hein J BMC Bioinformatics; 2005 Apr; 6():83. PubMed ID: 15804354 [TBL] [Abstract][Full Text] [Related]
44. On the evolutionary descent of organisms and organelles: a global phylogeny based on a highly conserved structural core in small subunit ribosomal RNA. Gray MW; Sankoff D; Cedergren RJ Nucleic Acids Res; 1984 Jul; 12(14):5837-52. PubMed ID: 6462918 [TBL] [Abstract][Full Text] [Related]
45. Inference for phylogenies under a hybrid parsimony method: evolutionary-symmetric transversion parsimony. Sinsheimer JS; Lake JA; Little RJ Biometrics; 1997 Mar; 53(1):23-38. PubMed ID: 9147592 [TBL] [Abstract][Full Text] [Related]
46. cDNA sequence of zebrafish (Brachydanio rerio) translation elongation factor-1 alpha: molecular phylogeny of eukaryotes based on elongation factor-1 alpha protein sequences. Nordnes S; Krauss S; Johansen T Biochim Biophys Acta; 1994 Oct; 1219(2):529-32. PubMed ID: 7918652 [TBL] [Abstract][Full Text] [Related]
47. The use of functional analysis of the ribosome as a tool to determine archaebacterial phylogeny. Amils R; Ramírez L; Sanz JL; Marín I; Pisabarro AG; Ureña D Can J Microbiol; 1989 Jan; 35(1):141-7. PubMed ID: 2470480 [TBL] [Abstract][Full Text] [Related]
48. Component H of the DNA-dependent RNA polymerases of Archaea is homologous to a subunit shared by the three eucaryal nuclear RNA polymerases. Klenk HP; Palm P; Lottspeich F; Zillig W Proc Natl Acad Sci U S A; 1992 Jan; 89(1):407-10. PubMed ID: 1729711 [TBL] [Abstract][Full Text] [Related]
49. Origin of the eukaryotic nucleus: eukaryotes and eocytes are genotypically related. Lake JA Can J Microbiol; 1989 Jan; 35(1):109-18. PubMed ID: 2720490 [TBL] [Abstract][Full Text] [Related]
50. A deep phylogeny of viral and cellular right-hand polymerases. Černý J; Černá Bolfíková B; de A Zanotto PM; Grubhoffer L; Růžek D Infect Genet Evol; 2015 Dec; 36():275-286. PubMed ID: 26431690 [TBL] [Abstract][Full Text] [Related]
51. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage. Cermakian N; Ikeda TM; Cedergren R; Gray MW Nucleic Acids Res; 1996 Feb; 24(4):648-54. PubMed ID: 8604305 [TBL] [Abstract][Full Text] [Related]
52. Analysis of evolution of exon-intron structure of eukaryotic genes. Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222 [TBL] [Abstract][Full Text] [Related]
53. Ancestral sequence reconstruction in primate mitochondrial DNA: compositional bias and effect on functional inference. Krishnan NM; Seligmann H; Stewart CB; De Koning AP; Pollock DD Mol Biol Evol; 2004 Oct; 21(10):1871-83. PubMed ID: 15229290 [TBL] [Abstract][Full Text] [Related]
54. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Russo CA; Takezaki N; Nei M Mol Biol Evol; 1996 Mar; 13(3):525-36. PubMed ID: 8742641 [TBL] [Abstract][Full Text] [Related]
55. Phylogenetic place of mitochondrion-lacking protozoan, Giardia lamblia, inferred from amino acid sequences of elongation factor 2. Hashimoto T; Nakamura Y; Kamaishi T; Nakamura F; Adachi J; Okamoto K; Hasegawa M Mol Biol Evol; 1995 Sep; 12(5):782-93. PubMed ID: 7476125 [TBL] [Abstract][Full Text] [Related]
56. Recent origin and phylogenetic utility of divergent ITS putative pseudogenes: a case study from Naucleeae (Rubiaceae). Razafimandimbison SG; Kellogg EA; Bremer B Syst Biol; 2004 Apr; 53(2):177-92. PubMed ID: 15205048 [TBL] [Abstract][Full Text] [Related]
57. Sequence evolution and phylogenetic signal in control-region and cytochrome b sequences of rainbow fishes (Melanotaeniidae). Zhu D; Jamieson BG; Hugall A; Moritz C Mol Biol Evol; 1994 Jul; 11(4):672-83. PubMed ID: 8078406 [TBL] [Abstract][Full Text] [Related]
58. The origin of viruses and their possible roles in major evolutionary transitions. Forterre P Virus Res; 2006 Apr; 117(1):5-16. PubMed ID: 16476498 [TBL] [Abstract][Full Text] [Related]
59. Variation in modes and rates of evolution in nuclear and mitochondrial ribosomal DNA in the mushroom genus Amanita (Agaricales, Basidiomycota): phylogenetic implications. Moncalvo JM; Drehmel D; Vilgalys R Mol Phylogenet Evol; 2000 Jul; 16(1):48-63. PubMed ID: 10877939 [TBL] [Abstract][Full Text] [Related]
60. Organization and nucleotide sequence of the genes encoding the large subunits A, B and C of the DNA-dependent RNA polymerase of the archaebacterium Sulfolobus acidocaldarius. Pühler G; Lottspeich F; Zillig W Nucleic Acids Res; 1989 Jun; 17(12):4517-34. PubMed ID: 2501756 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]