BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 21165468)

  • 41. Near-infrared and naked-eye fluorescence probe for direct and highly selective detection of cysteine and its application in living cells.
    Zhang J; Wang J; Liu J; Ning L; Zhu X; Yu B; Liu X; Yao X; Zhang H
    Anal Chem; 2015; 87(9):4856-63. PubMed ID: 25875053
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Improved Aromatic Substitution-Rearrangement-Based Ratiometric Fluorescent Cysteine-Specific Probe and Its Application of Real-Time Imaging under Oxidative Stress in Living Zebrafish.
    He L; Yang X; Xu K; Lin W
    Anal Chem; 2017 Sep; 89(17):9567-9573. PubMed ID: 28791863
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A mitochondria-targeted ratiometric two-photon fluorescent probe for detecting intracellular cysteine and homocysteine.
    Yue P; Yang X; Ning P; Xi X; Yu H; Feng Y; Shao R; Meng X
    Talanta; 2018 Feb; 178():24-30. PubMed ID: 29136818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fluorescent properties of antioxidant cysteine ABZ analogue.
    Raut S; Heck A; Vishwanatha J; Sarkar P; Mody A; Luchowski R; Gryczynski Z; Gryczynski I
    J Photochem Photobiol B; 2011 Mar; 102(3):241-5. PubMed ID: 21237671
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An aza-BODIPY based near-infrared fluorescent probe for sensitive discrimination of cysteine/homocysteine and glutathione in living cells.
    Xiang HJ; Tham HP; Nguyen MD; Fiona Phua SZ; Lim WQ; Liu JG; Zhao Y
    Chem Commun (Camb); 2017 May; 53(37):5220-5223. PubMed ID: 28443883
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A flavone-based turn-on fluorescent probe for intracellular cysteine/homocysteine sensing with high selectivity.
    Zhang J; Lv Y; Zhang W; Ding H; Liu R; Zhao Y; Zhang G; Tian Z
    Talanta; 2016; 146():41-8. PubMed ID: 26695232
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel near-infrared fluorescent probe for highly selective detection of cysteine and its application in living cells.
    Zhang W; Liu J; Yu Y; Han Q; Cheng T; Shen J; Wang B; Jiang Y
    Talanta; 2018 Aug; 185():477-482. PubMed ID: 29759230
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dual-Emission Channels for Simultaneous Sensing of Cysteine and Homocysteine in Living Cells.
    Li Y; Liu W; Zhang H; Wang M; Wu J; Ge J; Wang P
    Chem Asian J; 2017 Aug; 12(16):2098-2103. PubMed ID: 28556589
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A novel NBD-based fluorescent turn-on probe for the detection of cysteine and homocysteine in living cells.
    Wang J; Niu L; Huang J; Yan Z; Wang J
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():52-58. PubMed ID: 29126008
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A highly selective FRET-based fluorescent probe for detection of cysteine and homocysteine.
    Shiu HY; Chong HC; Leung YC; Wong MK; Che CM
    Chemistry; 2010 Mar; 16(11):3308-13. PubMed ID: 20162653
    [No Abstract]   [Full Text] [Related]  

  • 51. Multi-channel colorimetric and fluorescent probes for differentiating between cysteine and glutathione/homocysteine.
    Song L; Jia T; Lu W; Jia N; Zhang W; Qian J
    Org Biomol Chem; 2014 Nov; 12(42):8422-7. PubMed ID: 25220214
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Dual emission channels for sensitive discrimination of Cys/Hcy and GSH in plasma and cells.
    Zhang Y; Shao X; Wang Y; Pan F; Kang R; Peng F; Huang Z; Zhang W; Zhao W
    Chem Commun (Camb); 2015 Mar; 51(20):4245-8. PubMed ID: 25670526
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A highly sensitive near-infrared fluorescent probe for cysteine and homocysteine in living cells.
    Kong F; Liu R; Chu R; Wang X; Xu K; Tang B
    Chem Commun (Camb); 2013 Oct; 49(80):9176-8. PubMed ID: 23989532
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection and differentiation of Cys, Hcy and GSH mixtures by
    Yang S; Zeng Q; Guo Q; Chen S; Liu H; Liu M; McMahon MT; Zhou X
    Talanta; 2018 Jul; 184():513-519. PubMed ID: 29674077
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A red-emitting fluorescent probe with large Stokes shift for real-time tracking of cysteine over glutathione and homocysteine in living cells.
    Qian M; Zhang L; Wang J; Peng X
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 May; 214():469-475. PubMed ID: 30818148
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of a small molecule probe capable of discriminating cysteine, homocysteine, and glutathione with three distinct turn-on fluorescent outputs.
    Wang F; Guo Z; Li X; Li X; Zhao C
    Chemistry; 2014 Sep; 20(36):11471-8. PubMed ID: 25056113
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fluorescent sensor based on BINOL for recognition of cysteine, homocysteine, and glutathione.
    Peng R; Lin L; Wu X; Liu X; Feng X
    J Org Chem; 2013 Nov; 78(22):11602-5. PubMed ID: 24160671
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Broadly Applicable Strategy for the Fluorescence Based Detection and Differentiation of Glutathione and Cysteine/Homocysteine: Demonstration in Vitro and in Vivo.
    Chen W; Luo H; Liu X; Foley JW; Song X
    Anal Chem; 2016 Apr; 88(7):3638-46. PubMed ID: 26911923
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Colorimetric and NIR Fluorescence Probe with Multiple Binding Sites for Distinguishing Detection of Cys/Hcy and GSH in Vivo.
    Xiong K; Huo F; Chao J; Zhang Y; Yin C
    Anal Chem; 2019 Jan; 91(2):1472-1478. PubMed ID: 30482012
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simultaneous Visualization of Endogenous Homocysteine, Cysteine, Glutathione, and their Transformation through Different Fluorescence Channels.
    Yin G; Niu T; Yu T; Gan Y; Sun X; Yin P; Chen H; Zhang Y; Li H; Yao S
    Angew Chem Int Ed Engl; 2019 Mar; 58(14):4557-4561. PubMed ID: 30742366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.