These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21165496)

  • 1. Novel Mn1.5Co1.5O4 spinel cathodes for intermediate temperature solid oxide fuel cells.
    Liu H; Zhu X; Cheng M; Cong Y; Yang W
    Chem Commun (Camb); 2011 Feb; 47(8):2378-80. PubMed ID: 21165496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-performance cathode for the next generation of solid-oxide fuel cells.
    Shao Z; Haile SM
    Nature; 2004 Sep; 431(7005):170-3. PubMed ID: 15356627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of PrBaCo2O(5+delta) as a proton-conducting solid-oxide fuel cell cathode.
    Lin Y; Ran R; Zhang C; Cai R; Shao Z
    J Phys Chem A; 2010 Mar; 114(11):3764-72. PubMed ID: 19594122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and characterization of novel oxide anodes for solid oxide fuel cells.
    Tao S; Irvine JT
    Chem Rec; 2004; 4(2):83-95. PubMed ID: 15073876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Stable Sr-Free Cobaltite-Based Perovskite Cathodes Directly Assembled on a Barrier-Layer-Free Y
    Ai N; Li N; Rickard WD; Cheng Y; Chen K; Jiang SP
    ChemSusChem; 2017 Mar; 10(5):993-1003. PubMed ID: 28220997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of chemical interactions between stabilized zirconia and perovskites.
    Stochniol G; Broel S; Naoumidis A; Nickel H
    Anal Bioanal Chem; 1996 Jun; 355(5-6):697-700. PubMed ID: 15045345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational investigation of O2 reduction and diffusion on 25% Sr-doped LaMnO3 cathodes in solid oxide fuel cells.
    Chen HT; Raghunath P; Lin MC
    Langmuir; 2011 Jun; 27(11):6787-93. PubMed ID: 21563810
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lanthanum strontium manganite/yttria-stabilized zirconia nanocomposites derived from a surfactant assisted, co-assembled mesoporous phase.
    Mamak M; Métraux GS; Petrov S; Coombs N; Ozin GA; Green MA
    J Am Chem Soc; 2003 Apr; 125(17):5161-75. PubMed ID: 12708868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization-Induced Interface and Sr Segregation of in Situ Assembled La
    Chen K; Li N; Ai N; Cheng Y; Rickard WD; Jiang SP
    ACS Appl Mater Interfaces; 2016 Nov; 8(46):31729-31737. PubMed ID: 27808496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perovskite Sr₁-xCexCoO₃-δ (0.05 ≤ x ≤ 0.15) as superior cathodes for intermediate temperature solid oxide fuel cells.
    Yang W; Hong T; Li S; Ma Z; Sun C; Xia C; Chen L
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):1143-8. PubMed ID: 23336216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High redox and performance stability of layered SmBa(0.5)Sr(0.5)Co(1.5)Cu(0.5)O(5+δ) perovskite cathodes for intermediate-temperature solid oxide fuel cells.
    Jun A; Shin J; Kim G
    Phys Chem Chem Phys; 2013 Dec; 15(45):19906-12. PubMed ID: 24150720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic analysis of the oxygen reduction reaction at (La,Sr)MnO3 cathodes in solid oxide fuel cells.
    Co AC; Birss VI
    J Phys Chem B; 2006 Jun; 110(23):11299-309. PubMed ID: 16771400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of the Simple Infiltrated Microstructure Polarization Loss Estimation (SIMPLE) model to describe the performance of nano-composite solid oxide fuel cell cathodes.
    Nicholas JD; Wang L; Call AV; Barnett SA
    Phys Chem Chem Phys; 2012 Nov; 14(44):15379-92. PubMed ID: 23060257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Copper cobalt spinel as a high performance cathode for intermediate temperature solid oxide fuel cells.
    Shao L; Wang Q; Fan L; Wang P; Zhang N; Sun K
    Chem Commun (Camb); 2016 Jun; 52(55):8615-8. PubMed ID: 27326915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A ternary cathode composed of LSM, YSZ and Ce0.9Mn0.1O2-δ for the intermediate temperature solid oxide fuel cells.
    Liu L; Zhao Z; Zhang X; Cui D; Tu B; Ou D; Cheng M
    Chem Commun (Camb); 2013 Jan; 49(8):777-9. PubMed ID: 23108180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational design of lower-temperature solid oxide fuel cell cathodes via nanotailoring of co-assembled composite structures.
    Lee KT; Lidie AA; Yoon HS; Wachsman ED
    Angew Chem Int Ed Engl; 2014 Dec; 53(49):13463-7. PubMed ID: 25287642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured thin solid oxide fuel cells with high power density.
    Ignatiev A; Chen X; Wu N; Lu Z; Smith L
    Dalton Trans; 2008 Oct; (40):5501-6. PubMed ID: 19082034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A redox-stable efficient anode for solid-oxide fuel cells.
    Tao S; Irvine JT
    Nat Mater; 2003 May; 2(5):320-3. PubMed ID: 12692533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EPMA of interfaces applied to the solid oxide fuel cell.
    Grübmeier H; Naoumidis A; Stochniol G; Tsoga A
    Anal Bioanal Chem; 1995 Oct; 353(3-4):393-8. PubMed ID: 15048506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Formation of Er
    He S; Zhang Q; Maurizio G; Catellani L; Chen K; Chang Q; Santarelli M; Jiang SP
    ACS Appl Mater Interfaces; 2018 Nov; 10(47):40549-40559. PubMed ID: 30394736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.