BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 21165673)

  • 21. Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips.
    Sakai Y; Yoshiura Y; Nakazawa K
    J Biosci Bioeng; 2011 Jan; 111(1):85-91. PubMed ID: 20863754
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differentiation of mouse embryonic stem cells into gonadotrope-like cells in vitro.
    Zhao X; Teng R; Asanuma K; Okouchi Y; Johkura K; Ogiwara N; Sasaki K
    J Soc Gynecol Investig; 2005 May; 12(4):257-62. PubMed ID: 15866117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microsphere size effects on embryoid body incorporation and embryonic stem cell differentiation.
    Carpenedo RL; Seaman SA; McDevitt TC
    J Biomed Mater Res A; 2010 Aug; 94(2):466-75. PubMed ID: 20213812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Cardio-myogenic differentiation of human amniotic fluid colony derived stem cells in the form of embryonic body-like structure].
    Ma XR; Xie H; Zhang SL; Gao TB; Wang X; Shang YF; Zhou JM; Chen F
    Zhonghua Yi Xue Za Zhi; 2011 Dec; 91(46):3293-7. PubMed ID: 22333154
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mass preparation of size-controlled mouse embryonic stem cell aggregates and induction of cardiac differentiation by cell patterning method.
    Sasaki D; Shimizu T; Masuda S; Kobayashi J; Itoga K; Tsuda Y; Yamashita JK; Yamato M; Okano T
    Biomaterials; 2009 Sep; 30(26):4384-9. PubMed ID: 19487020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generation of human embryonic stem cell-derived mesoderm and cardiac cells using size-specified aggregates in an oxygen-controlled bioreactor.
    Niebruegge S; Bauwens CL; Peerani R; Thavandiran N; Masse S; Sevaptisidis E; Nanthakumar K; Woodhouse K; Husain M; Kumacheva E; Zandstra PW
    Biotechnol Bioeng; 2009 Feb; 102(2):493-507. PubMed ID: 18767184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fetal bovine serum enables cardiac differentiation of human embryonic stem cells.
    Bettiol E; Sartiani L; Chicha L; Krause KH; Cerbai E; Jaconi ME
    Differentiation; 2007 Oct; 75(8):669-81. PubMed ID: 17459089
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved media compositions for the differentiation of embryonic stem cells into osteoblasts and chondrocytes.
    Kuske B; Savkovic V; zur Nieden NI
    Methods Mol Biol; 2011; 690():195-215. PubMed ID: 21042995
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The embryonic stem cell test.
    Schulpen SH; Piersma AH
    Methods Mol Biol; 2013; 947():375-82. PubMed ID: 23138917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cardiomyocytes.
    Yang X; Guo XM; Wang CY; Tian XC
    Methods Enzymol; 2006; 418():267-83. PubMed ID: 17141041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional activity of the carboxyl-terminally extended oxytocin precursor Peptide during cardiac differentiation of embryonic stem cells.
    Gassanov N; Devost D; Danalache B; Noiseux N; Jankowski M; Zingg HH; Gutkowska J
    Stem Cells; 2008 Jan; 26(1):45-54. PubMed ID: 17951221
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The culture of mouse embryonic stem cells and formation of embryoid bodies.
    Jackson M; Taylor AH; Jones EA; Forrester LM
    Methods Mol Biol; 2010; 633():1-18. PubMed ID: 20204616
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hydrodynamic modulation of embryonic stem cell differentiation by rotary orbital suspension culture.
    Sargent CY; Berguig GY; Kinney MA; Hiatt LA; Carpenedo RL; Berson RE; McDevitt TC
    Biotechnol Bioeng; 2010 Feb; 105(3):611-26. PubMed ID: 19816980
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cardiomyogenic differentiation of embryoid bodies is promoted by rotary orbital suspension culture.
    Sargent CY; Berguig GY; McDevitt TC
    Tissue Eng Part A; 2009 Feb; 15(2):331-42. PubMed ID: 19193130
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methods for embryoid body formation: the microwell approach.
    Spelke DP; Ortmann D; Khademhosseini A; Ferreira L; Karp JM
    Methods Mol Biol; 2011; 690():151-62. PubMed ID: 21042991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Defined-size embryoid bodies formed in the presence of serum replacement increases the efficiency of the cardiac differentiation of mouse embryonic stem cells.
    Preda MB; Burlacu A; Simionescu M
    Tissue Cell; 2013 Feb; 45(1):54-60. PubMed ID: 23107982
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Similar pattern in cardiac differentiation of human embryonic stem cell lines, BG01V and ReliCellhES1, under low serum concentration supplemented with bone morphogenetic protein-2.
    Pal R; Khanna A
    Differentiation; 2007 Feb; 75(2):112-22. PubMed ID: 17316381
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Derivation and characterization of canine embryonic stem cell lines with in vitro and in vivo differentiation potential.
    Vaags AK; Rosic-Kablar S; Gartley CJ; Zheng YZ; Chesney A; Villagómez DA; Kruth SA; Hough MR
    Stem Cells; 2009 Feb; 27(2):329-40. PubMed ID: 19038794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differentiation of endothelial cells derived from mouse embryoid bodies: a possible in vitro vasculogenesis model.
    Kim GD; Kim GJ; Seok JH; Chung HM; Chee KM; Rhee GS
    Toxicol Lett; 2008 Aug; 180(3):166-73. PubMed ID: 18590808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bone morphogenetic protein-4 enhances cardiomyocyte differentiation of cynomolgus monkey ESCs in knockout serum replacement medium.
    Hosseinkhani M; Hosseinkhani H; Khademhosseini A; Bolland F; Kobayashi H; Gonzalez SP
    Stem Cells; 2007 Mar; 25(3):571-80. PubMed ID: 17138962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.