BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 21165758)

  • 1. Evaluation of the acetaldehyde production and degradation potential of 26 enological Saccharomyces and non-Saccharomyces yeast strains in a resting cell model system.
    Li E; de Orduña RM
    J Ind Microbiol Biotechnol; 2011 Sep; 38(9):1391-8. PubMed ID: 21165758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetaldehyde kinetics of enological yeast during alcoholic fermentation in grape must.
    Li E; Mira de Orduña R
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):229-236. PubMed ID: 27896529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox interactions between Saccharomyces cerevisiae and Saccharomyces uvarum in mixed culture under enological conditions.
    Cheraiti N; Guezenec S; Salmon JM
    Appl Environ Microbiol; 2005 Jan; 71(1):255-60. PubMed ID: 15640195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
    Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M
    Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetaldehyde formation in submerged cultures of non-film-forming species of Saccharomyces.
    OUGH CS
    Appl Microbiol; 1961 Jul; 9(4):316-9. PubMed ID: 13731720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of oxygenation on the performance of three non-Saccharomyces yeasts in co-fermentation with Saccharomyces cerevisiae.
    Shekhawat K; Bauer FF; Setati ME
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2479-2491. PubMed ID: 27913851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Very early acetaldehyde production by industrial Saccharomyces cerevisiae strains: a new intrinsic character.
    Cheraiti N; Guezenec S; Salmon JM
    Appl Microbiol Biotechnol; 2010 Mar; 86(2):693-700. PubMed ID: 19921176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Occurrence and enological properties of two new non-conventional yeasts (Nakazawaea ishiwadae and Lodderomyces elongisporus) in wine fermentations.
    Ruiz J; Ortega N; Martín-Santamaría M; Acedo A; Marquina D; Pascual O; Rozès N; Zamora F; Santos A; Belda I
    Int J Food Microbiol; 2019 Sep; 305():108255. PubMed ID: 31252247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acetaldehyde production in Saccharomyces cerevisiae wine yeasts.
    Romano P; Suzzi G; Turbanti L; Polsinelli M
    FEMS Microbiol Lett; 1994 May; 118(3):213-8. PubMed ID: 8020744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Saccharomyces and Saccharomyces strains co-fermentation increases acetaldehyde accumulation: effect on anthocyanin-derived pigments in Tannat red wines.
    Medina K; Boido E; Fariña L; Dellacassa E; Carrau F
    Yeast; 2016 Jul; 33(7):339-43. PubMed ID: 26888345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation.
    Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D
    Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Secondary products formation as a tool for discriminating non-Saccharomyces wine strains. Strain diversity in non-Saccharomyces wine yeasts.
    Romano P; Suzzi G; Domizio P; Fatichenti F
    Antonie Van Leeuwenhoek; 1997 Mar; 71(3):239-42. PubMed ID: 9111917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification and characterization of cell wall polysaccharides released by non-Saccharomyces yeast strains during alcoholic fermentation.
    Giovani G; Rosi I; Bertuccioli M
    Int J Food Microbiol; 2012 Nov; 160(2):113-8. PubMed ID: 23177050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of acetaldehyde and glycerol in the adaptation to ethanol stress of Saccharomyces cerevisiae and other yeasts.
    Vriesekoop F; Haass C; Pamment NB
    FEMS Yeast Res; 2009 May; 9(3):365-71. PubMed ID: 19416102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of wine yeast (Saccharomyces cerevisiae) aldehyde dehydrogenases to acetaldehyde stress during Icewine fermentation.
    Pigeau GM; Inglis DL
    J Appl Microbiol; 2007 Nov; 103(5):1576-86. PubMed ID: 17953569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast population dynamics during spontaneous fermentation of icewine and selection of indigenous Saccharomyces cerevisiae strains for the winemaking in Qilian, China.
    Feng L; Wang J; Ye D; Song Y; Qin Y; Liu Y
    J Sci Food Agric; 2020 Dec; 100(15):5385-5394. PubMed ID: 32535908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flor yeasts of Saccharomyces cerevisiae--their ecology, genetics and metabolism.
    Alexandre H
    Int J Food Microbiol; 2013 Oct; 167(2):269-75. PubMed ID: 24141073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of indigenous Saccharomyces cerevisiae and Starmerella bacillaris strains as a tool to create chemical complexity in local wines.
    Nisiotou A; Sgouros G; Mallouchos A; Nisiotis CS; Michaelidis C; Tassou C; Banilas G
    Food Res Int; 2018 Sep; 111():498-508. PubMed ID: 30007712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Specific Phenotypic Traits of Starmerella bacillaris Related to Nitrogen Source Consumption and Central Carbon Metabolite Production during Wine Fermentation.
    Englezos V; Cocolin L; Rantsiou K; Ortiz-Julien A; Bloem A; Dequin S; Camarasa C
    Appl Environ Microbiol; 2018 Aug; 84(16):. PubMed ID: 29858207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Volatile composition of bilberry wines fermented with non-Saccharomyces and Saccharomyces yeasts in pure, sequential and simultaneous inoculations.
    Liu S; Laaksonen O; Yang B
    Food Microbiol; 2019 Jun; 80():25-39. PubMed ID: 30704594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.