These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 21165776)

  • 1. On the mechanics underlying the reservoir-excess separation in systemic arteries and their implications for pulse wave analysis.
    Alastruey J
    Cardiovasc Eng; 2010 Dec; 10(4):176-89. PubMed ID: 21165776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries.
    Aguado-Sierra J; Alastruey J; Wang JJ; Hadjiloizou N; Davies J; Parker KH
    Proc Inst Mech Eng H; 2008 May; 222(4):403-16. PubMed ID: 18595353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The reservoir-wave paradigm introduces error into arterial wave analysis: a computer modelling and in-vivo study.
    Mynard JP; Penny DJ; Davidson MR; Smolich JJ
    J Hypertens; 2012 Apr; 30(4):734-43. PubMed ID: 22278142
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel wave reflection model of the human arterial system.
    Zhang H; Li JK
    Cardiovasc Eng; 2009 Jun; 9(2):39-48. PubMed ID: 19495973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of wave speed and wave separation in the arteries using diameter and velocity.
    Feng J; Khir AW
    J Biomech; 2010 Feb; 43(3):455-62. PubMed ID: 19892359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wave intensity amplification and attenuation in non-linear flow: implications for the calculation of local reflection coefficients.
    Mynard J; Penny DJ; Smolich JJ
    J Biomech; 2008 Dec; 41(16):3314-21. PubMed ID: 19019371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave potential and the one-dimensional windkessel as a wave-based paradigm of diastolic arterial hemodynamics.
    Mynard JP; Smolich JJ
    Am J Physiol Heart Circ Physiol; 2014 Aug; 307(3):H307-18. PubMed ID: 24878775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wave propagation in a model of the arterial circulation.
    Wang JJ; Parker KH
    J Biomech; 2004 Apr; 37(4):457-70. PubMed ID: 14996557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model.
    Feng J; Khir AW
    Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arterial reservoir-excess pressure and ventricular work.
    Parker KH; Alastruey J; Stan GB
    Med Biol Eng Comput; 2012 Apr; 50(4):419-24. PubMed ID: 22367750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wave propagation and reflection in the canine aorta: analysis using a reservoir-wave approach.
    Wang JJ; Shrive NG; Parker KH; Hughes AD; Tyberg JV
    Can J Cardiol; 2011; 27(3):389.e1-10. PubMed ID: 21601775
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The arterial reservoir pressure increases with aging and is the major determinant of the aortic augmentation index.
    Davies JE; Baksi J; Francis DP; Hadjiloizou N; Whinnett ZI; Manisty CH; Aguado-Sierra J; Foale RA; Malik IS; Tyberg JV; Parker KH; Mayet J; Hughes AD
    Am J Physiol Heart Circ Physiol; 2010 Feb; 298(2):H580-6. PubMed ID: 20008272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-linear separation of pressure, velocity and wave intensity into forward and backward components.
    Mynard JP; Davidson MR; Penny DJ; Smolich JJ
    Med Biol Eng Comput; 2012 Jun; 50(6):641-8. PubMed ID: 22447369
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards new indices of arterial stiffness using systolic pulse contour analysis: a theoretical point of view.
    Chemla D; Plamann K; Nitenberg A
    J Cardiovasc Pharmacol; 2008 Feb; 51(2):111-7. PubMed ID: 18287877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The case for the reservoir-wave approach.
    Tyberg JV; Bouwmeester JC; Parker KH; Shrive NG; Wang JJ
    Int J Cardiol; 2014 Mar; 172(2):299-306. PubMed ID: 24485224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wall stress and deformation analysis in a numerical model of pulse wave propagation.
    He F; Hua L; Gao L
    Biomed Mater Eng; 2015; 26 Suppl 1():S527-32. PubMed ID: 26406044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noninvasive (input) impedance, pulse wave velocity, and wave reflection in healthy middle-aged men and women.
    Segers P; Rietzschel ER; De Buyzere ML; Vermeersch SJ; De Bacquer D; Van Bortel LM; De Backer G; Gillebert TC; Verdonck PR;
    Hypertension; 2007 Jun; 49(6):1248-55. PubMed ID: 17404183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling pulse wave propagation in the rabbit systemic circulation to assess the effects of altered nitric oxide synthesis.
    Alastruey J; Nagel SR; Nier BA; Hunt AA; Weinberg PD; Peiró J
    J Biomech; 2009 Sep; 42(13):2116-23. PubMed ID: 19646697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increase in pulse wavelength causes the systemic arterial tree to degenerate into a classical windkessel.
    Mohiuddin MW; Laine GA; Quick CM
    Am J Physiol Heart Circ Physiol; 2007 Aug; 293(2):H1164-71. PubMed ID: 17483241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves.
    Feng J; Long Q; Khir AW
    J Biomech; 2007; 40(10):2130-8. PubMed ID: 17166499
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.