These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 21166088)
1. Performance evaluation of kinetic parameter estimation methods in dynamic FDG-PET studies. Dai X; Chen Z; Tian J Nucl Med Commun; 2011 Jan; 32(1):4-16. PubMed ID: 21166088 [TBL] [Abstract][Full Text] [Related]
2. Comparative assessment of linear least-squares, nonlinear least-squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic Ben Bouallègue F; Vauchot F; Mariano-Goulart D Med Phys; 2019 Mar; 46(3):1260-1271. PubMed ID: 30592540 [TBL] [Abstract][Full Text] [Related]
3. Kinetic modelling using basis functions derived from two-tissue compartmental models with a plasma input function: general principle and application to [18F]fluorodeoxyglucose positron emission tomography. Hong YT; Fryer TD Neuroimage; 2010 May; 51(1):164-72. PubMed ID: 20156574 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of objective functions for estimation of kinetic parameters. Muzic RF; Christian BT Med Phys; 2006 Feb; 33(2):342-53. PubMed ID: 16532939 [TBL] [Abstract][Full Text] [Related]
5. An input function estimation method for FDG-PET human brain studies. Guo H; Renaut RA; Chen K Nucl Med Biol; 2007 Jul; 34(5):483-92. PubMed ID: 17591548 [TBL] [Abstract][Full Text] [Related]
6. Generalized linear least squares algorithms for modeling glucose metabolism in the human brain with corrections for vascular effects. Cai W; Feng D; Fulton R; Siu WC Comput Methods Programs Biomed; 2002 Apr; 68(1):1-14. PubMed ID: 11886698 [TBL] [Abstract][Full Text] [Related]
7. Parametric mapping of [18F]fluoromisonidazole positron emission tomography using basis functions. Hong YT; Beech JS; Smith R; Baron JC; Fryer TD J Cereb Blood Flow Metab; 2011 Feb; 31(2):648-57. PubMed ID: 20736963 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of a direct 4D reconstruction method using generalised linear least squares for estimating nonlinear micro-parametric maps. Angelis GI; Matthews JC; Kotasidis FA; Markiewicz PJ; Lionheart WR; Reader AJ Ann Nucl Med; 2014 Nov; 28(9):860-73. PubMed ID: 25073760 [TBL] [Abstract][Full Text] [Related]
9. GLLS for optimally sampled continuous dynamic system modeling: theory and algorithm. Feng D; Ho D; Lau KK; Siu WC Comput Methods Programs Biomed; 1999 Apr; 59(1):31-43. PubMed ID: 10215175 [TBL] [Abstract][Full Text] [Related]
10. Fitting the two-compartment model in DCE-MRI by linear inversion. Flouri D; Lesnic D; Sourbron SP Magn Reson Med; 2016 Sep; 76(3):998-1006. PubMed ID: 26376011 [TBL] [Abstract][Full Text] [Related]
11. Parameter estimation using weighted total least squares in the two-compartment exchange model. Garpebring A; Löfstedt T Magn Reson Med; 2018 Jan; 79(1):561-567. PubMed ID: 28349618 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of non-uniform weighting in non-linear regression for pharmacokinetic neuroreceptor modelling. Thiele F; Buchert R Nucl Med Commun; 2008 Feb; 29(2):179-88. PubMed ID: 18094641 [TBL] [Abstract][Full Text] [Related]
13. Rapid algorithms for the construction of cerebral blood flow and oxygen utilization images with oxygen-15 and dynamic positron emission tomography. Ho D; Feng D Comput Methods Programs Biomed; 1999 Feb; 58(2):99-117. PubMed ID: 10092026 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of basis function and linear least squares methods for generating parametric blood flow images using 15O-water and Positron Emission Tomography. Boellaard R; Knaapen P; Rijbroek A; Luurtsema GJ; Lammertsma AA Mol Imaging Biol; 2005; 7(4):273-85. PubMed ID: 16080023 [TBL] [Abstract][Full Text] [Related]
15. Intrahepatic fluorine-18-fluorodeoxyglucose kinetics measured by least squares nonlinear computer modelling and Gjedde-Patlak-Rutland graphical analysis. Keramida G; Gregg S; Peters AM Nucl Med Commun; 2019 Jul; 40(7):675-683. PubMed ID: 31116146 [TBL] [Abstract][Full Text] [Related]
16. Errors introduced by tissue heterogeneity in estimation of local cerebral glucose utilization with current kinetic models of the [18F]fluorodeoxyglucose method. Schmidt K; Lucignani G; Moresco RM; Rizzo G; Gilardi MC; Messa C; Colombo F; Fazio F; Sokoloff L J Cereb Blood Flow Metab; 1992 Sep; 12(5):823-34. PubMed ID: 1506447 [TBL] [Abstract][Full Text] [Related]
17. Optimization of methods for quantification of rCBF using high-resolution [¹⁵O]H₂O PET images. Walker MD; Feldmann M; Matthews JC; Anton-Rodriguez JM; Wang S; Koepp MJ; Asselin MC Phys Med Biol; 2012 Apr; 57(8):2251-71. PubMed ID: 22455998 [TBL] [Abstract][Full Text] [Related]
19. Voxelwise quantification of [(11)C](R)-rolipram PET data: a comparison between model-based and data-driven methods. Rizzo G; Veronese M; Zanotti-Fregonara P; Bertoldo A J Cereb Blood Flow Metab; 2013 Jul; 33(7):1032-40. PubMed ID: 23512132 [TBL] [Abstract][Full Text] [Related]
20. The effects of measurement errors in the plasma radioactivity curve on parameter estimation in positron emission tomography. Chen KW; Huang SC; Yu DC Phys Med Biol; 1991 Sep; 36(9):1183-200. PubMed ID: 1946602 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]