BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 21166290)

  • 1. Interaction of arsenic and phosphate on their uptake and accumulation in Chinese brake fern.
    Lou LQ; Ye ZH; Lin AJ; Wong MH
    Int J Phytoremediation; 2010 Jul; 12(5):487-502. PubMed ID: 21166290
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Cao X; Ma LQ; Tu C
    Environ Pollut; 2004; 128(3):317-25. PubMed ID: 14720474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Arsenic speciation, and arsenic and phosphate distribution in arsenic hyperaccumulator Pteris vittata L. and non-hyperaccumulator Pteris ensiformis L.
    Singh N; Ma LQ
    Environ Pollut; 2006 May; 141(2):238-46. PubMed ID: 16257102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.).
    Al Agely A; Sylvia DM; Ma LQ
    J Environ Qual; 2005; 34(6):2181-6. PubMed ID: 16275719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata.
    Fayiga AO; Ma LQ
    Sci Total Environ; 2006 Apr; 359(1-3):17-25. PubMed ID: 15985282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of cultivation conditions on the uptake of arsenite and arsenic chemical species accumulated by Pteris vittata in hydroponics.
    Hatayama M; Sato T; Shinoda K; Inoue C
    J Biosci Bioeng; 2011 Mar; 111(3):326-32. PubMed ID: 21185228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoextraction: simulating uptake and translocation of arsenic in a soil-plant system.
    Ouyang Y
    Int J Phytoremediation; 2005; 7(1):3-17. PubMed ID: 15943240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms of arsenic hyperaccumulation in Pteris vittata. Uptake kinetics, interactions with phosphate, and arsenic speciation.
    Wang J; Zhao FJ; Meharg AA; Raab A; Feldmann J; McGrath SP
    Plant Physiol; 2002 Nov; 130(3):1552-61. PubMed ID: 12428020
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L.
    Tu C; Ma LQ
    Environ Pollut; 2005 May; 135(2):333-40. PubMed ID: 15734593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arsenic uptake and transport of Pteris vittata L. as influenced by phosphate and inorganic arsenic species under sand culture.
    Huang ZC; An ZZ; Chen TB; Lei M; Xiao XY; Liao XY
    J Environ Sci (China); 2007; 19(6):714-8. PubMed ID: 17969645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of arsenic accumulation in 18 fern species and four Pteris vittata accessions.
    Srivastava M; Santos J; Srivastava P; Ma LQ
    Bioresour Technol; 2010 Apr; 101(8):2691-9. PubMed ID: 20044253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Phosphate on Arsenate Uptake and Translocation in Nonmetallicolous and Metallicolous Populations of Pteris Vittata L. Under Solution Culture.
    Wu F; Wu S; Deng D; Wong MH
    Int J Phytoremediation; 2015; 17(9):841-6. PubMed ID: 26083716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation of an arsenic-contaminated site using Pteris vittata L.: a two-year study.
    Kertulis-Tartar GM; Ma LQ; Tu C; Chirenje T
    Int J Phytoremediation; 2006; 8(4):311-22. PubMed ID: 17305305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Timing of phosphate application affects arsenic phytoextraction by Pteris vittata L. of different ages.
    Santos JA; Gonzaga MI; Ma LQ; Srivastava M
    Environ Pollut; 2008 Jul; 154(2):306-11. PubMed ID: 18045757
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L.
    Mathews S; Ma LQ; Rathinasabapathi B; Natarajan S; Saha UK
    Bioresour Technol; 2010 Nov; 101(21):8024-30. PubMed ID: 20566284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions of arsenic and phenanthrene on their uptake and antioxidative response in Pteris vittata L.
    Sun L; Yan X; Liao X; Wen Y; Chong Z; Liang T
    Environ Pollut; 2011 Dec; 159(12):3398-405. PubMed ID: 21924806
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antioxidant responses of hyper-accumulator and sensitive fern species to arsenic.
    Srivastava M; Ma LQ; Singh N; Singh S
    J Exp Bot; 2005 May; 56(415):1335-42. PubMed ID: 15781440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Limitations of growth-parameters in Lemna gibba bioassays for arsenic and uranium under variable phosphate availability.
    Mkandawire M; Taubert B; Dudel EG
    Ecotoxicol Environ Saf; 2006 Sep; 65(1):118-28. PubMed ID: 16029890
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of arsenic tolerance, uptake and accumulation between arsenic hyperaccumulator, Pteris vittata L. and non-accumulator, P. semipinnata L.--a hydroponic study.
    Lou LQ; Ye ZH; Wong MH
    J Hazard Mater; 2009 Nov; 171(1-3):436-42. PubMed ID: 19577839
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of arsenic hyperaccumulation in Pteris species: root As influx and translocation.
    Poynton CY; Huang JW; Blaylock MJ; Kochian LV; Elless MP
    Planta; 2004 Oct; 219(6):1080-8. PubMed ID: 15221388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.