BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

941 related articles for article (PubMed ID: 21166382)

  • 1. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T; Kovalenko A
    J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amino acid conformational preferences and solvation of polar backbone atoms in peptides and proteins.
    Avbelj F
    J Mol Biol; 2000 Jul; 300(5):1335-59. PubMed ID: 10903873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atoms-in-molecules study of the genetically encoded amino acids. III. Bond and atomic properties and their correlations with experiment including mutation-induced changes in protein stability and genetic coding.
    Matta CF; Bader RF
    Proteins; 2003 Aug; 52(3):360-99. PubMed ID: 12866050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial Decomposition Analysis of the Thermodynamics of Cyclodextrin Complexation.
    Yamazaki T; Kovalenko A
    J Chem Theory Comput; 2009 Jul; 5(7):1723-30. PubMed ID: 26609997
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein-protein association using MM-GBSA: application to the TCR-p-MHC complex.
    Zoete V; Michielin O
    Proteins; 2007 Jun; 67(4):1026-47. PubMed ID: 17377991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure, binding energy, and solvation structure of the streptavidin-biotin supramolecular complex: ONIOM and 3D-RISM study.
    Li Q; Gusarov S; Evoy S; Kovalenko A
    J Phys Chem B; 2009 Jul; 113(29):9958-67. PubMed ID: 19545155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computational alanine scanning and free energy decomposition for E. coli type I signal peptidase with lipopeptide inhibitor complex.
    Li T; Froeyen M; Herdewijn P
    J Mol Graph Model; 2008 Jan; 26(5):813-23. PubMed ID: 17532654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphometric approach to thermodynamic quantities of solvation of complex molecules: extension to multicomponent solvent.
    Kodama R; Roth R; Harano Y; Kinoshita M
    J Chem Phys; 2011 Jul; 135(4):045103. PubMed ID: 21806161
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Application of the frozen atom approximation to the GB/SA continuum model for solvation free energy.
    Guvench O; Weiser J; Shenkin P; Kolossváry I; Still WC
    J Comput Chem; 2002 Jan; 23(2):214-21. PubMed ID: 11924735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination between native and intentionally misfolded conformations of proteins: ES/IS, a new method for calculating conformational free energy that uses both dynamics simulations with an explicit solvent and an implicit solvent continuum model.
    Vorobjev YN; Almagro JC; Hermans J
    Proteins; 1998 Sep; 32(4):399-413. PubMed ID: 9726412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nature of the free energy barriers to two-state folding.
    Akmal A; Muñoz V
    Proteins; 2004 Oct; 57(1):142-52. PubMed ID: 15326600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional theory of solvation and its relation to implicit solvent models.
    Ramirez R; Borgis D
    J Phys Chem B; 2005 Apr; 109(14):6754-63. PubMed ID: 16851760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Free energy of solvation from molecular dynamics simulation applying Voronoi-Delaunay triangulation to the cavity creation.
    Goncalves PF; Stassen H
    J Chem Phys; 2005 Dec; 123(21):214109. PubMed ID: 16356041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A highly parallelizable integral equation theory for three dimensional solvent distribution function: application to biomolecules.
    Yokogawa D; Sato H; Imai T; Sakaki S
    J Chem Phys; 2009 Feb; 130(6):064111. PubMed ID: 19222271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Free energy simulations: the meaning of the individual contributions from a component analysis.
    Boresch S; Archontis G; Karplus M
    Proteins; 1994 Sep; 20(1):25-33. PubMed ID: 7824520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of ligand-receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: applications to a set of glucose analogue inhibitors of glycogen phosphorylase.
    Venkatarangan P; Hopfinger AJ
    J Med Chem; 1999 Jun; 42(12):2169-79. PubMed ID: 10377222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localization and visualization of excess chemical potential in statistical mechanical integral equation theory 3D-HNC-RISM.
    Du QS; Liu PJ; Huang RB
    J Mol Graph Model; 2008 Feb; 26(6):1014-9. PubMed ID: 17913525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural properties of hydration shell around various conformations of simple polypeptides.
    Czapiewski D; Zielkiewicz J
    J Phys Chem B; 2010 Apr; 114(13):4536-50. PubMed ID: 20232827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-integral QSPR models: local energy properties.
    Ehresmann B; de Groot MJ; Clark T
    J Chem Inf Model; 2005; 45(4):1053-60. PubMed ID: 16045301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters.
    Geerke DP; van Gunsteren WF
    J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.