These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 21166468)

  • 21. Photoinduced band gap shift and deep levels in luminescent carbon nanotubes.
    Finnie P; Lefebvre J
    ACS Nano; 2012 Feb; 6(2):1702-14. PubMed ID: 22308958
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Channeling Excitons to Emissive Defect Sites in Carbon Nanotube Semiconductors beyond the Dilute Regime.
    Powell LR; Piao Y; Ng AL; Wang Y
    J Phys Chem Lett; 2018 Jun; 9(11):2803-2807. PubMed ID: 29746778
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concomitant length and diameter separation of single-walled carbon nanotubes.
    Heller DA; Mayrhofer RM; Baik S; Grinkova YV; Usrey ML; Strano MS
    J Am Chem Soc; 2004 Nov; 126(44):14567-73. PubMed ID: 15521777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exciton energy transfer-assisted photoluminescence brightening from freestanding single-walled carbon nanotube bundles.
    Kato T; Hatakeyama R
    J Am Chem Soc; 2008 Jun; 130(25):8101-7. PubMed ID: 18512918
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions.
    Cognet L; Tsyboulski DA; Rocha JD; Doyle CD; Tour JM; Weisman RB
    Science; 2007 Jun; 316(5830):1465-8. PubMed ID: 17556581
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytically assisted tip growth mechanism for single-wall carbon nanotubes.
    Charlier JC; Amara H; Lambin P
    ACS Nano; 2007 Oct; 1(3):202-7. PubMed ID: 19206650
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction.
    Qin LC
    Phys Chem Chem Phys; 2007 Jan; 9(1):31-48. PubMed ID: 17164886
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of PL quenching during single-walled carbon nanotube rebundling and diameter-dependent surfactant interactions.
    McDonald TJ; Engtrakul C; Jones M; Rumbles G; Heben MJ
    J Phys Chem B; 2006 Dec; 110(50):25339-46. PubMed ID: 17165980
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitivity of ammonia interaction with single-walled carbon nanotube bundles to the presence of defect sites and functionalities.
    Feng X; Irle S; Witek H; Morokuma K; Vidic R; Borguet E
    J Am Chem Soc; 2005 Aug; 127(30):10533-8. PubMed ID: 16045340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of Energetic Disorder on Exciton Lifetime and Photoluminescence Efficiency in Conjugated Polymers.
    Rörich I; Mikhnenko OV; Gehrig D; Blom PW; Crăciun NI
    J Phys Chem B; 2017 Feb; 121(6):1405-1412. PubMed ID: 28099016
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear photoluminescence spectroscopy of carbon nanotubes with localized exciton states.
    Iwamura M; Akizuki N; Miyauchi Y; Mouri S; Shaver J; Gao Z; Cognet L; Lounis B; Matsuda K
    ACS Nano; 2014 Nov; 8(11):11254-60. PubMed ID: 25331628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoluminescence Intensity Fluctuations and Temperature-Dependent Decay Dynamics of Individual Carbon Nanotube sp
    Kim Y; Velizhanin KA; He X; Sarpkaya I; Yomogida Y; Tanaka T; Kataura H; Doorn SK; Htoon H
    J Phys Chem Lett; 2019 Mar; 10(6):1423-1430. PubMed ID: 30848914
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes.
    Duque JG; Pasquali M; Cognet L; Lounis B
    ACS Nano; 2009 Aug; 3(8):2153-6. PubMed ID: 19594113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Monte Carlo simulations of hydrogen adsorption in alkali-doped single-walled carbon nanotubes.
    Hu N; Sun X; Hsu A
    J Chem Phys; 2005 Jul; 123(4):044708. PubMed ID: 16095385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exciton diffusion in air-suspended single-walled carbon nanotubes.
    Moritsubo S; Murai T; Shimada T; Murakami Y; Chiashi S; Maruyama S; Kato YK
    Phys Rev Lett; 2010 Jun; 104(24):247402. PubMed ID: 20867335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Length-dependent optical effects in single-wall carbon nanotubes.
    Fagan JA; Simpson JR; Bauer BJ; Lacerda SH; Becker ML; Chun J; Migler KB; Walker AR; Hobbie EK
    J Am Chem Soc; 2007 Aug; 129(34):10607-12. PubMed ID: 17672462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes.
    Wang X; Alexander-Webber JA; Jia W; Reid BP; Stranks SD; Holmes MJ; Chan CC; Deng C; Nicholas RJ; Taylor RA
    Sci Rep; 2016 Nov; 6():37167. PubMed ID: 27849046
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects.
    Li MK; Riaz A; Wederhake M; Fink K; Saha A; Dehm S; He X; Schöppler F; Kappes MM; Htoon H; Popov VN; Doorn SK; Hertel T; Hennrich F; Krupke R
    ACS Nano; 2022 Aug; 16(8):11742-11754. PubMed ID: 35732039
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tuning the conductance of single-walled carbon nanotubes by ion irradiation in the Anderson localization regime.
    Gómez-Navarro C; de Pablo PJ; Gómez-Herrero J; Biel B; Garcia-Vidal FJ; Rubio A; Flores F
    Nat Mater; 2005 Jul; 4(7):534-9. PubMed ID: 15965479
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.