BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 21166473)

  • 1. A thermodynamic approach to the mechanism of cell-penetrating peptides in model membranes.
    McKeown AN; Naro JL; Huskins LJ; Almeida PF
    Biochemistry; 2011 Feb; 50(5):654-62. PubMed ID: 21166473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-active peptides: binding, translocation, and flux in lipid vesicles.
    Almeida PF
    Biochim Biophys Acta; 2014 Sep; 1838(9):2216-27. PubMed ID: 24769436
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge Distribution Fine-Tunes the Translocation of α-Helical Amphipathic Peptides across Membranes.
    Ablan FDO; Spaller BL; Abdo KI; Almeida PF
    Biophys J; 2016 Oct; 111(8):1738-1749. PubMed ID: 27760360
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics.
    Almeida PF; Pokorny A
    Biochemistry; 2009 Sep; 48(34):8083-93. PubMed ID: 19655791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemolytic activity of membrane-active peptides correlates with the thermodynamics of binding to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers.
    Spaller BL; Trieu JM; Almeida PF
    J Membr Biol; 2013 Mar; 246(3):257-62. PubMed ID: 23329339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A molecular dynamics study of cell-penetrating peptide transportan-10 (TP10): Binding, folding and insertion to transmembrane state in zwitterionic membrane.
    Bennett AL; Cranford KN; Bates AL; Sabatini CR; Lee HS
    Biochim Biophys Acta Biomembr; 2024 Jan; 1866(1):184218. PubMed ID: 37634858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tools for predicting binding and insertion of CPPs into lipid bilayers.
    Almeida PF
    Methods Mol Biol; 2011; 683():81-98. PubMed ID: 21053124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic effects in saturation of membrane binding of cationic cell-penetrating peptide.
    Svirina A; Terterov I
    Eur Biophys J; 2021 Jan; 50(1):15-23. PubMed ID: 33245398
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Small changes in the primary structure of transportan 10 alter the thermodynamics and kinetics of its interaction with phospholipid vesicles.
    Yandek LE; Pokorny A; Almeida PF
    Biochemistry; 2008 Mar; 47(9):3051-60. PubMed ID: 18260641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-state nuclear magnetic resonance relaxation studies of the interaction mechanism of antimicrobial peptides with phospholipid bilayer membranes.
    Lu JX; Damodaran K; Blazyk J; Lorigan GA
    Biochemistry; 2005 Aug; 44(30):10208-17. PubMed ID: 16042398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleic acid delivery by cell penetrating peptides derived from dengue virus capsid protein: design and mechanism of action.
    Freire JM; Veiga AS; Rego de Figueiredo I; de la Torre BG; Santos NC; Andreu D; Da Poian AT; Castanho MA
    FEBS J; 2014 Jan; 281(1):191-215. PubMed ID: 24286593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane Crossing and Membranotropic Activity of Cell-Penetrating Peptides: Dangerous Liaisons?
    Walrant A; Cardon S; Burlina F; Sagan S
    Acc Chem Res; 2017 Dec; 50(12):2968-2975. PubMed ID: 29172443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptides with the same composition, hydrophobicity, and hydrophobic moment bind to phospholipid bilayers with different affinities.
    Cherry MA; Higgins SK; Melroy H; Lee HS; Pokorny A
    J Phys Chem B; 2014 Oct; 118(43):12462-70. PubMed ID: 25329983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wasp mastoparans follow the same mechanism as the cell-penetrating peptide transportan 10.
    Yandek LE; Pokorny A; Almeida PF
    Biochemistry; 2009 Aug; 48(30):7342-51. PubMed ID: 19594111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing transmembrane alpha-helices that insert spontaneously.
    Wimley WC; White SH
    Biochemistry; 2000 Apr; 39(15):4432-42. PubMed ID: 10757993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution NMR studies of cell-penetrating peptides in model membrane systems.
    Mäler L
    Adv Drug Deliv Rev; 2013 Jul; 65(8):1002-11. PubMed ID: 23137785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of fusion peptide-membrane interactions.
    Li Y; Han X; Tamm LK
    Biochemistry; 2003 Jun; 42(23):7245-51. PubMed ID: 12795621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secondary structure of cell-penetrating peptides during interaction with fungal cells.
    Gong Z; Ikonomova SP; Karlsson AJ
    Protein Sci; 2018 Mar; 27(3):702-713. PubMed ID: 29247564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The helical propensity of KLA amphipathic peptides enhances their binding to gel-state lipid membranes.
    Arouri A; Dathe M; Blume A
    Biophys Chem; 2013; 180-181():10-21. PubMed ID: 23792704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of the cell-penetrating peptide transportan 10 permeation of lipid bilayers.
    Yandek LE; Pokorny A; Florén A; Knoelke K; Langel U; Almeida PF
    Biophys J; 2007 Apr; 92(7):2434-44. PubMed ID: 17218466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.