These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Anatomic mapping of lumbar nerve roots during a direct lateral transpsoas approach to the spine: a cadaveric study. Banagan K; Gelb D; Poelstra K; Ludwig S Spine (Phila Pa 1976); 2011 May; 36(11):E687-91. PubMed ID: 21217450 [TBL] [Abstract][Full Text] [Related]
3. Can triggered electromyography monitoring throughout retraction predict postoperative symptomatic neuropraxia after XLIF? Results from a prospective multicenter trial. Uribe JS; Isaacs RE; Youssef JA; Khajavi K; Balzer JR; Kanter AS; Küelling FA; Peterson MD; Eur Spine J; 2015 Apr; 24 Suppl 3():378-85. PubMed ID: 25874744 [TBL] [Abstract][Full Text] [Related]
4. An anatomical study of the lumbosacral plexus as related to the minimally invasive transpsoas approach to the lumbar spine. Benglis DM; Vanni S; Levi AD J Neurosurg Spine; 2009 Feb; 10(2):139-44. PubMed ID: 19278328 [TBL] [Abstract][Full Text] [Related]
5. Prevention of neurological complications using a neural monitoring system with a finger electrode in the extreme lateral interbody fusion approach. Narita W; Takatori R; Arai Y; Nagae M; Tonomura H; Hayashida T; Ogura T; Fujiwara H; Kubo T J Neurosurg Spine; 2016 Oct; 25(4):456-463. PubMed ID: 27203809 [TBL] [Abstract][Full Text] [Related]
6. Use of motor evoked potentials during lateral lumbar interbody fusion reduces postoperative deficits. Riley MR; Doan AT; Vogel RW; Aguirre AO; Pieri KS; Scheid EH Spine J; 2018 Oct; 18(10):1763-1778. PubMed ID: 29505853 [TBL] [Abstract][Full Text] [Related]
7. Nerve injury during the transpsoas approach for lumbar fusion. Houten JK; Alexandre LC; Nasser R; Wollowick AL J Neurosurg Spine; 2011 Sep; 15(3):280-4. PubMed ID: 21619401 [TBL] [Abstract][Full Text] [Related]
8. Defining the safe working zones using the minimally invasive lateral retroperitoneal transpsoas approach: an anatomical study. Uribe JS; Arredondo N; Dakwar E; Vale FL J Neurosurg Spine; 2010 Aug; 13(2):260-6. PubMed ID: 20672964 [TBL] [Abstract][Full Text] [Related]
9. Motor nerve injuries following the minimally invasive lateral transpsoas approach. Cahill KS; Martinez JL; Wang MY; Vanni S; Levi AD J Neurosurg Spine; 2012 Sep; 17(3):227-31. PubMed ID: 22746272 [TBL] [Abstract][Full Text] [Related]
10. Saphenous nerve somatosensory evoked potentials: a novel technique to monitor the femoral nerve during transpsoas lumbar lateral interbody fusion. Silverstein J; Mermelstein L; DeWal H; Basra S Spine (Phila Pa 1976); 2014 Jul; 39(15):1254-60. PubMed ID: 24732850 [TBL] [Abstract][Full Text] [Related]
11. Trans-cranial motor evoked potential detection of femoral nerve injury in trans-psoas lateral lumbar interbody fusion. Chaudhary K; Speights K; McGuire K; White AP J Clin Monit Comput; 2015 Oct; 29(5):549-54. PubMed ID: 26076805 [TBL] [Abstract][Full Text] [Related]
12. Femoral nerve and lumbar plexus injury after minimally invasive lateral retroperitoneal transpsoas approach: electrodiagnostic prognostic indicators and a roadmap to recovery. Abel NA; Januszewski J; Vivas AC; Uribe JS Neurosurg Rev; 2018 Apr; 41(2):457-464. PubMed ID: 28560607 [TBL] [Abstract][Full Text] [Related]
13. Protecting the genitofemoral nerve during direct/extreme lateral interbody fusion (DLIF/XLIF) procedures. Jahangiri FR; Sherman JH; Holmberg A; Louis R; Elias J; Vega-Bermudez F Am J Electroneurodiagnostic Technol; 2010 Dec; 50(4):321-35. PubMed ID: 21313792 [TBL] [Abstract][Full Text] [Related]
14. Monitoring lumbar plexus integrity in extreme lateral transpsoas approaches to the lumbar spine: a new protocol with anatomical bases. Bendersky M; Solá C; Muntadas J; Gruenberg M; Calligaris S; Mereles M; Valacco M; Bassani J; Nicolás M Eur Spine J; 2015 May; 24(5):1051-7. PubMed ID: 25676611 [TBL] [Abstract][Full Text] [Related]