BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 21166699)

  • 1. Therapeutic potential of CAMPATH-1H in skeletal tumours.
    Fritsche-Guenther R; Gruetzkau A; Noske A; Melcher I; Schaser KD; Schlag PM; Kasper HU; Krenn V; Sers C
    Histopathology; 2010 Dec; 57(6):851-61. PubMed ID: 21166699
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective therapy for a murine model of adult T-cell leukemia with the humanized anti-CD52 monoclonal antibody, Campath-1H.
    Zhang Z; Zhang M; Goldman CK; Ravetch JV; Waldmann TA
    Cancer Res; 2003 Oct; 63(19):6453-7. PubMed ID: 14559836
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Campath-1H treatment of multiple sclerosis.
    Jones JL; Coles AJ
    Neurodegener Dis; 2008; 5(1):27-31. PubMed ID: 18075272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anti-CD52 antibody, alemtuzumab, binds to Langerhans cells in Langerhans cell histiocytosis.
    Jordan MB; McClain KL; Yan X; Hicks J; Jaffe R
    Pediatr Blood Cancer; 2005 Mar; 44(3):251-4. PubMed ID: 15390358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Levels of expression of CD52 in normal and leukemic B and T cells: correlation with in vivo therapeutic responses to Campath-1H.
    Ginaldi L; De Martinis M; Matutes E; Farahat N; Morilla R; Dyer MJ; Catovsky D
    Leuk Res; 1998 Feb; 22(2):185-91. PubMed ID: 9593475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergence of CD52-, glycosylphosphatidylinositol-anchor-deficient lymphocytes in rheumatoid arthritis patients following Campath-1H treatment.
    Brett SJ; Baxter G; Cooper H; Rowan W; Regan T; Tite J; Rapson N
    Int Immunol; 1996 Mar; 8(3):325-34. PubMed ID: 8671618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel Raji-Burkitt's lymphoma model for preclinical and mechanistic evaluation of CD52-targeted immunotherapeutic agents.
    Lapalombella R; Zhao X; Triantafillou G; Yu B; Jin Y; Lozanski G; Cheney C; Heerema N; Jarjoura D; Lehman A; Lee LJ; Marcucci G; Lee RJ; Caligiuri MA; Muthusamy N; Byrd JC
    Clin Cancer Res; 2008 Jan; 14(2):569-78. PubMed ID: 18223233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1.9 A structure of the therapeutic antibody CAMPATH-1H fab in complex with a synthetic peptide antigen.
    James LC; Hale G; Waldmann H; Bloomer AC
    J Mol Biol; 1999 Jun; 289(2):293-301. PubMed ID: 10366506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The sensitivity of acute lymphoblastic leukemia cells carrying the t(12;21) translocation to campath-1H-mediated cell lysis.
    Golay J; Cortiana C; Manganini M; Cazzaniga G; Salvi A; Spinelli O; Bassan R; Barbui T; Biondi A; Rambaldi A; Introna M
    Haematologica; 2006 Mar; 91(3):322-30. PubMed ID: 16531255
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibody selection against CD52 produces a paroxysmal nocturnal haemoglobinuria phenotype in human lymphocytes by a novel mechanism.
    Taylor VC; Sims M; Brett S; Field MC
    Biochem J; 1997 Mar; 322 ( Pt 3)(Pt 3):919-25. PubMed ID: 9148769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CD52 ligation induces CD4 and CD8 down modulation in vivo and in vitro.
    Shah A; Lowenstein H; Chant A; Khan A
    Transpl Int; 2006 Sep; 19(9):749-58. PubMed ID: 16918536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenotypic transformation of CD52(pos) to CD52(neg) leukemic T cells as a mechanism for resistance to CAMPATH-1H.
    Birhiray RE; Shaw G; Guldan S; Rudolf D; Delmastro D; Santabarbara P; Brettman L
    Leukemia; 2002 May; 16(5):861-4. PubMed ID: 11986948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of CAMPATH-1 antibodies in the treatment of lymphoid malignancies.
    Dyer MJ
    Semin Oncol; 1999 Oct; 26(5 Suppl 14):52-7. PubMed ID: 10561018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CD52 antigen may be a therapeutic target for eosinophilic rhinosinusitis.
    Zhang PL; Pennington JR; Prichard JW; Blasick TM; Brown AM; Potdar S
    Ann Clin Lab Sci; 2007; 37(2):148-51. PubMed ID: 17522370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an in vivo antibody-mediated killing (IVAK) model, a flow cytometric method to rapidly evaluate therapeutic antibodies.
    Guyre CA; Gomes D; Smith KA; Kaplan JM; Perricone MA
    J Immunol Methods; 2008 Apr; 333(1-2):51-60. PubMed ID: 18314132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterogeneous CD52 expression among hematologic neoplasms: implications for the use of alemtuzumab (CAMPATH-1H).
    Rodig SJ; Abramson JS; Pinkus GS; Treon SP; Dorfman DM; Dong HY; Shipp MA; Kutok JL
    Clin Cancer Res; 2006 Dec; 12(23):7174-9. PubMed ID: 17145843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of alemtuzumab on neoplastic B cells.
    Golay J; Manganini M; Rambaldi A; Introna M
    Haematologica; 2004 Dec; 89(12):1476-83. PubMed ID: 15590398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sialoglycoprotein, gp20, of the human capacitated sperm surface is a homologue of the leukocyte CD52 antigen: analysis of the effect of anti-CD52 monoclonal antibody (CAMPATH-1) on capacitated spermatozoa.
    Focarelli R; Francavilla S; Francavilla F; Della Giovampaola C; Santucci A; Rosati F
    Mol Hum Reprod; 1999 Jan; 5(1):46-51. PubMed ID: 10050661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CD52 antigen--a review.
    DomagaƂa A; Kurpisz M
    Med Sci Monit; 2001; 7(2):325-31. PubMed ID: 11257744
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epitope analysis of immunoglobulins against gp20, a GPI-anchored protein of the human sperm surface homologous to leukocyte antigen CD52.
    Flori F; Giovampaola CD; Focarelli R; Secciani F; La Sala GB; Nicoli A; Hale G; Rosati F
    Tissue Antigens; 2005 Sep; 66(3):209-16. PubMed ID: 16101832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.