These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21166709)

  • 61. Identification of a p-cresol degradation pathway by a GFP-based transposon in Pseudomonas and its dominant expression in colonies.
    Cho AR; Lim EJ; Veeranagouda Y; Lee K
    J Microbiol Biotechnol; 2011 Nov; 21(11):1179-83. PubMed ID: 22127130
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Isolation of a mutant strain of Pseudomonas sp ATCC 31461 exhibiting elevated polysaccharide production.
    West TP
    J Ind Microbiol Biotechnol; 2002 Oct; 29(4):185-8. PubMed ID: 12355317
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Identification of a glycosyltransferase from Mycobacterium marinum involved in addition of a caryophyllose moiety in lipooligosaccharides.
    Sarkar D; Sidhu M; Singh A; Chen J; Lammas DA; van der Sar AM; Besra GS; Bhatt A
    J Bacteriol; 2011 May; 193(9):2336-40. PubMed ID: 21378187
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A bifunctional O-antigen polymerase structure reveals a new glycosyltransferase family.
    Clarke BR; Ovchinnikova OG; Sweeney RP; Kamski-Hennekam ER; Gitalis R; Mallette E; Kelly SD; Lowary TL; Kimber MS; Whitfield C
    Nat Chem Biol; 2020 Apr; 16(4):450-457. PubMed ID: 32152541
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Characterization and spontaneous mutation of a novel gene, polE, involved in pellicle formation in Acetobacter tropicalis SKU1100.
    Deeraksa A; Moonmangmee S; Toyama H; Yamada M; Adachi O; Matsushita K
    Microbiology (Reading); 2005 Dec; 151(Pt 12):4111-4120. PubMed ID: 16339956
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Trophic regulation of autoaggregation in Pseudomonas taiwanensis VLB120.
    Schmutzler K; Kracht ON; Schmid A; Buehler K
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):347-60. PubMed ID: 26428239
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Ultramicrocells form by reductive division in macroscopic Pseudomonas aerial structures.
    Lee K; Veeranagouda Y
    Environ Microbiol; 2009 May; 11(5):1117-25. PubMed ID: 19452595
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Cell surface hydrophobicity: a key component in the degradation of polyethylene succinate by Pseudomonas sp. AKS2.
    Tribedi P; Sil AK
    J Appl Microbiol; 2014 Feb; 116(2):295-303. PubMed ID: 24165295
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Starvation-specific formation of a peripheral exopolysaccharide by a marine Pseudomonas sp., strain S9.
    Wrangstadh M; Szewzyk U; Ostling J; Kjelleberg S
    Appl Environ Microbiol; 1990 Jul; 56(7):2065-72. PubMed ID: 2202255
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Genetic, Biochemical, and Structural Analyses of Bacterial Surface Polysaccharides.
    Cooper CA; Mainprize IL; Nickerson NN
    Adv Exp Med Biol; 2015; 883():295-315. PubMed ID: 26621474
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biosynthesis of lipopolysaccharide O antigens.
    Whitfield C
    Trends Microbiol; 1995 May; 3(5):178-85. PubMed ID: 7542987
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The Role of kguT Gene in 2-Ketogluconate-Producing Pseudomonas plecoglossicida JUIM01.
    Sun W; Wang Q; Luan F; Man Z; Cui F; Qi X
    Appl Biochem Biotechnol; 2019 Mar; 187(3):965-974. PubMed ID: 30109560
    [TBL] [Abstract][Full Text] [Related]  

  • 73. The biosynthetic origin of ribofuranose in bacterial polysaccharides.
    Kelly SD; Williams DM; Nothof JT; Kim T; Lowary TL; Kimber MS; Whitfield C
    Nat Chem Biol; 2022 May; 18(5):530-537. PubMed ID: 35393575
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Mutational changes in physiochemical cell surface properties of plant-growth-stimulating Pseudomonas spp. do not influence the attachment properties of the cells.
    de Weger LA; van Loosdrecht MC; Klaassen HE; Lugtenberg B
    J Bacteriol; 1989 May; 171(5):2756-61. PubMed ID: 2708317
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Identification of
    Kunoh T; Yamamoto T; Ono E; Sugimoto S; Takabe K; Takeda M; Utada AS; Nomura N
    Appl Environ Microbiol; 2023 Apr; 89(4):e0191922. PubMed ID: 36951572
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparison of the adhesion properties of Deleya marina and the exopolysaccharide-defective mutant strain DMR.
    Shea C; Nunley JW; Williamson JC; Smith-Somerville HE
    Appl Environ Microbiol; 1991 Nov; 57(11):3107-13. PubMed ID: 1781675
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Complete Genome Sequence of
    Niu S; Ma W; Jin M; Chen J; Li S; Zou X
    Microbiol Resour Announc; 2019 Jul; 8(30):. PubMed ID: 31346019
    [No Abstract]   [Full Text] [Related]  

  • 78. Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms.
    Dayton H; Kiss J; Wei M; Chauhan S; LaMarre E; Cornell WC; Morgan CJ; Janakiraman A; Min W; Tomer R; Price-Whelan A; Nirody JA; Dietrich LEP
    PLoS Biol; 2024 Feb; 22(2):e3002205. PubMed ID: 38300958
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Phage Paride can kill dormant, antibiotic-tolerant cells of Pseudomonas aeruginosa by direct lytic replication.
    Maffei E; Woischnig AK; Burkolter MR; Heyer Y; Humolli D; Thürkauf N; Bock T; Schmidt A; Manfredi P; Egli A; Khanna N; Jenal U; Harms A
    Nat Commun; 2024 Jan; 15(1):175. PubMed ID: 38168031
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Cell arrangement impacts metabolic activity and antibiotic tolerance in
    Dayton H; Kiss J; Wei M; Chauhan S; LaMarre E; Cornell WC; Morgan CJ; Janakiraman A; Min W; Tomer R; Price-Whelan A; Nirody JA; Dietrich LEP
    bioRxiv; 2023 Aug; ():. PubMed ID: 37645902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.