These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 21166898)
21. Crystal structure of human macrophage elastase (MMP-12) in complex with a hydroxamic acid inhibitor. Nar H; Werle K; Bauer MM; Dollinger H; Jung B J Mol Biol; 2001 Sep; 312(4):743-51. PubMed ID: 11575929 [TBL] [Abstract][Full Text] [Related]
22. A Metalloproteinase Mirolysin of Tannerella forsythia Inhibits All Pathways of the Complement System. Jusko M; Potempa J; Mizgalska D; Bielecka E; Ksiazek M; Riesbeck K; Garred P; Eick S; Blom AM J Immunol; 2015 Sep; 195(5):2231-40. PubMed ID: 26209620 [TBL] [Abstract][Full Text] [Related]
23. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Overall CM Mol Biotechnol; 2002 Sep; 22(1):51-86. PubMed ID: 12353914 [TBL] [Abstract][Full Text] [Related]
24. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Bode W; Maskos K Biol Chem; 2003 Jun; 384(6):863-72. PubMed ID: 12887053 [TBL] [Abstract][Full Text] [Related]
25. Structure and evolutionary aspects of matrix metalloproteinases: a brief overview. Das S; Mandal M; Chakraborti T; Mandal A; Chakraborti S Mol Cell Biochem; 2003 Nov; 253(1-2):31-40. PubMed ID: 14619953 [TBL] [Abstract][Full Text] [Related]
26. Structural differences of matrix metalloproteinases. Homology modeling and energy minimization of enzyme-substrate complexes. Terp GE; Christensen IT; Jørgensen FS J Biomol Struct Dyn; 2000 Jun; 17(6):933-46. PubMed ID: 10949161 [TBL] [Abstract][Full Text] [Related]
27. Miropin, a novel bacterial serpin from the periodontopathogen Tannerella forsythia, inhibits a broad range of proteases by using different peptide bonds within the reactive center loop. Ksiazek M; Mizgalska D; Enghild JJ; Scavenius C; Thogersen IB; Potempa J J Biol Chem; 2015 Jan; 290(1):658-70. PubMed ID: 25389290 [TBL] [Abstract][Full Text] [Related]
28. Identification and enzymatic characterization of two diverging murine counterparts of human interstitial collagenase (MMP-1) expressed at sites of embryo implantation. Balbín M; Fueyo A; Knäuper V; López JM; Alvarez J; Sánchez LM; Quesada V; Bordallo J; Murphy G; López-Otín C J Biol Chem; 2001 Mar; 276(13):10253-62. PubMed ID: 11113146 [TBL] [Abstract][Full Text] [Related]
29. Catalytic activities and substrate specificity of the human membrane type 4 matrix metalloproteinase catalytic domain. Wang Y; Johnson AR; Ye QZ; Dyer RD J Biol Chem; 1999 Nov; 274(46):33043-9. PubMed ID: 10551873 [TBL] [Abstract][Full Text] [Related]
30. Update of human and mouse matrix metalloproteinase families. Jackson BC; Nebert DW; Vasiliou V Hum Genomics; 2010 Feb; 4(3):194-201. PubMed ID: 20368140 [TBL] [Abstract][Full Text] [Related]
31. Matrilysin-2, a new matrix metalloproteinase expressed in human tumors and showing the minimal domain organization required for secretion, latency, and activity. Uría JA; López-Otín C Cancer Res; 2000 Sep; 60(17):4745-51. PubMed ID: 10987280 [TBL] [Abstract][Full Text] [Related]
32. Structural insight into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Morgunova E; Tuuttila A; Bergmann U; Tryggvason K Proc Natl Acad Sci U S A; 2002 May; 99(11):7414-9. PubMed ID: 12032297 [TBL] [Abstract][Full Text] [Related]
33. Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. Iyer LM; Koonin EV; Aravind L BMC Struct Biol; 2003 Jan; 3():1. PubMed ID: 12553882 [TBL] [Abstract][Full Text] [Related]
34. Characterization of matrix metalloproteinase-26, a novel metalloproteinase widely expressed in cancer cells of epithelial origin. Marchenko GN; Ratnikov BI; Rozanov DV; Godzik A; Deryugina EI; Strongin AY Biochem J; 2001 Jun; 356(Pt 3):705-18. PubMed ID: 11389678 [TBL] [Abstract][Full Text] [Related]
35. Future challenges facing the development of specific active-site-directed synthetic inhibitors of MMPs. Cuniasse P; Devel L; Makaritis A; Beau F; Georgiadis D; Matziari M; Yiotakis A; Dive V Biochimie; 2005; 87(3-4):393-402. PubMed ID: 15781327 [TBL] [Abstract][Full Text] [Related]
36. Family-wide characterization of matrix metalloproteinases from Arabidopsis thaliana reveals their distinct proteolytic activity and cleavage site specificity. Marino G; Huesgen PF; Eckhard U; Overall CM; Schröder WP; Funk C Biochem J; 2014 Jan; 457(2):335-46. PubMed ID: 24156403 [TBL] [Abstract][Full Text] [Related]
37. The multiple nucleotide-divalent cation binding modes of Saccharomyces cerevisiae CK2α indicate a possible co-substrate hydrolysis product (ADP/GDP) release pathway. Liu H; Wang H; Teng M; Li X Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):501-13. PubMed ID: 24531484 [TBL] [Abstract][Full Text] [Related]
38. Threonine 98, the pivotal residue of tissue inhibitor of metalloproteinases (TIMP)-1 in metalloproteinase recognition. Lee MH; Rapti M; Knaüper V; Murphy G J Biol Chem; 2004 Apr; 279(17):17562-9. PubMed ID: 14734567 [TBL] [Abstract][Full Text] [Related]
39. Domain structure and function of matrix metalloprotease 23 (MMP23): role in potassium channel trafficking. Galea CA; Nguyen HM; George Chandy K; Smith BJ; Norton RS Cell Mol Life Sci; 2014 Apr; 71(7):1191-210. PubMed ID: 23912897 [TBL] [Abstract][Full Text] [Related]
40. Matrix metalloproteinase-10/TIMP-2 structure and analyses define conserved core interactions and diverse exosite interactions in MMP/TIMP complexes. Batra J; Soares AS; Mehner C; Radisky ES PLoS One; 2013; 8(9):e75836. PubMed ID: 24073280 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]